OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Jospeh N. Mait
  • Vol. 48, Iss. 3 — Jan. 20, 2009
  • pp: 623–632

Lidar returns from multiply scattering media in multiple-field-of-view and CCD lidars with polarization devices: comparison of semi-analytical solution and Monte Carlo data

Ludmila I. Chaikovskaya, Eleonora P. Zege, Iosif L. Katsev, Markus Hirschberger, and Ulrich G. Oppel  »View Author Affiliations


Applied Optics, Vol. 48, Issue 3, pp. 623-632 (2009)
http://dx.doi.org/10.1364/AO.48.000623


View Full Text Article

Enhanced HTML    Acrobat PDF (882 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Quite recently, a semi-analytical approach to the sounding of multiply scattering media (clouds, seawaters) using multiple-field-of-view and CCD lidars with polarization devices was developed. The angular distributions of polarized components of the lidar returns from multiply scattering media computed on the basis of this theory using the small-angle approximation are presented and discussed. The semi-analytical nature of the solution makes the computation procedure faster. The obtained data are compared with results provided by the most advanced Monte Carlo algorithms for simulation of modern lidar performance. The good agreement between data provided by the semi-analytical approach and Monte Carlo computations assures one that these approaches can serve as a reliable theoretical base for interpretation and inversion of cloud lidar sounding data obtained with polarized lidars, including polarized multiple-field-of-view and CCD lidars.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(280.3640) Remote sensing and sensors : Lidar
(290.4210) Scattering : Multiple scattering
(290.5855) Scattering : Scattering, polarization
(010.1350) Atmospheric and oceanic optics : Backscattering

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: March 6, 2008
Revised Manuscript: November 4, 2008
Manuscript Accepted: November 4, 2008
Published: January 16, 2009

Citation
Ludmila I. Chaikovskaya, Eleonora P. Zege, Iosif L. Katsev, Markus Hirschberger, and Ulrich G. Oppel, "Lidar returns from multiply scattering media in multiple-field-of-view and CCD lidars with polarization devices: comparison of semi-analytical solution and Monte Carlo data," Appl. Opt. 48, 623-632 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-3-623


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Roy, L. R. Bissonnette, Ch. Bastille, and G. Vallee, “Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals,” Appl. Opt. 38, 5202-5211 (1999). [CrossRef]
  2. N. Roy, G. Roy, L. R. Bissonnette, and J.-R. Simard, “Measurement of the azimuthal dependence of cross-polarized lidar returns and its relation to optical depth,” Appl. Opt. 43, 2777-2785 (2004). [CrossRef] [PubMed]
  3. N. Roy and G. Roy, “Influence of multiple scattering on lidar depolarization measurements with an ICCD camera,” in Proceedings of the Fourteenth International Workshop on Multiple Scattering Lidar Experiments (MUSCLE XIV) (Defence R&D Canada, 2006), pp. 17-26. [PubMed]
  4. D. C. Look, Jr., and Y. R. Chen, “Experimental demonstration of the effects of scattering on a linearly polarized laser beam by spherical particles,” Proc. SPIE 1779, 130-139 (1992). [CrossRef]
  5. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, and I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441-453 (1997). [CrossRef] [PubMed]
  6. A. I. Carswell and S. R. Pal, “Polarization anisotropy in lidar multiple scattering from clouds,” Appl. Opt. 19, 4123-4126 (1980). [CrossRef] [PubMed]
  7. S. R. Pal and A. I. Carswell, “Polarization anisotropy in lidar multiple scattering from atmospheric clouds,” Appl. Opt. 24, 3464-3471 (1985). [CrossRef] [PubMed]
  8. M. Dogariu and T. Asakura, “Polarization-dependent backscattering patterns from weakly scattering media,” J. Opt. 24, 271-278 (1993). [CrossRef]
  9. B. D. Cameron, M. J. Rakovic, M. Mehrubeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. L. Cote, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485-487 (1998). [CrossRef]
  10. C. Collet, J. Zallat, and Y. Takakura, “Clustering of Mueller matrix images for skeletonized structure detection,” Opt. Express 12, 1271-1278 (2004). [CrossRef] [PubMed]
  11. M. J. Rakovic and G. W. Kattawar, “Theoretical analysis of polarization patterns from incoherent backscattering of light,” Appl. Opt. 37, 3333-3338 (1998). [CrossRef]
  12. L. I. Chaikovskaya and E. P. Zege, “Backscattering patterns in the polarized lidar sounding of strongly scattering media,” Proc. SPIE 5829, 246-254 (2005). [CrossRef]
  13. L. I. Chaikovskaya and E. P. Zege, “Theory of polarized lidar sounding including multiple scattering,” J. Quant. Spectrosc. Radiat. Transfer 88, 21-35 (2004). [CrossRef]
  14. U. G. Oppel, “Diffusion patterns of a pulsed laser beam seen by a monostatic and a bistatic CCD lidar,” Proc. SPIE 5829, 193-208 (2005). [CrossRef]
  15. U. G. Oppel and M. Wengenmayer, “A new approach to simulation of lidar multiple scattering returns and time-resolved diffusion patterns of a laser beam including polarization,” in Fourteenth International Workshop on Multiple Scattering Lidar Experiments (MUSCLE XIV) (Defence R&D Canada, 2006), pp. 53-68.
  16. E. W. Eloranta, “Practical model for the calculation of multiply scattered lidar returns,” Appl. Opt. 37, 2464-2472 (1998). [CrossRef]
  17. L. I. Chaikovskaya and E. P. Zege, “Efficient technique to simulate angular patterns of polarized signals from multiply scattering media in MFOV and CCD lidars,” J. Quant. Spectrosc. Radiat. Transfer. (to be published).
  18. E. P. Zege and L. I. Chaikovskaya, “Polarization of multiply scattered lidar return from clouds and ocean water,” J. Opt. Soc. Am. A. 16, 1430-1438 (1999). [CrossRef]
  19. E. P. Zege and L. I. Chaikovskaya, “Approximate solutions of the polarized radiation transfer equation in media with highly anisotropic scattering,” Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 21, 1043-1049 (1985).
  20. E. P. Zege and L. I. Chaikovskaya, “New approach to the polarized radiative transfer problem,” J. Quant. Spectrosc. Radiat. Transfer 55, 19-31 (1996). [CrossRef]
  21. E. P. Zege and L. I. Chaikovskaya, “Approximate theory of linearly polarized light propagation through a scattering medium,” J. Quant. Spectrosc. Radiat. Transfer 66, 413-435(2000). [CrossRef]
  22. L. I. Chaikovskaya, “Remote sensing of clouds using linearly and circularly polarized laser beams: techniques to compute signal polarization,” in Light Scattering Reviews 3, A. A. Kokhanovsky, ed., Springer Praxis Books (Springer, 2008), Part II, pp. 191-228. [CrossRef]
  23. I. L. Katsev, E. P. Zege, A. S. Prikhach, and I. N. Polonsky, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems,” J. Opt. Soc. Am. A 14, 1338-1346 (1997). [CrossRef]
  24. U. G. Oppel, M. Hirschberger, M. Wengenmayer, N. Roy, G. Roy, L. R. Bissonnette, and J.-R. Simard, “Simulation of the azimuthal dependence of cross-polarized lidar returns and its relation to optical depth and a comparison with measurements,” in Fourteenth International Workshop on Multiple Scattering Lidar Experiments (MUSCLE XIV) (Defence R&D Canada, 2006), pp. 27-39.
  25. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  26. S. Chandrasekhar , Radiative Transfer (Dover, 1960).
  27. E. Zege, A. Ivanov, and I. Katsev, Image Transfer Through a Scattering Medium (Springer-Verlag, 1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited