OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Jospeh N. Mait
  • Vol. 48, Iss. 3 — Jan. 20, 2009
  • pp: 633–642

Satellite remote sensing of dust aerosol indirect effects on ice cloud formation

Steve Szu-Cheng Ou, Kuo-Nan Liou, Xingjuan Wang, Richard Hansell, Randy Lefevre, and Stephen Cocks  »View Author Affiliations


Applied Optics, Vol. 48, Issue 3, pp. 633-642 (2009)
http://dx.doi.org/10.1364/AO.48.000633


View Full Text Article

Enhanced HTML    Acrobat PDF (1241 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We undertook a new approach to investigate the aerosol indirect effect of the first kind on ice cloud formation by using available data products from the Moderate-Resolution Imaging Spectrometer (MODIS) and obtained physical understanding about the interaction between aerosols and ice clouds. Our analysis focused on the examination of the variability in the correlation between ice cloud parameters (optical depth, effective particle size, cloud water path, and cloud particle number concentration) and aerosol optical depth and number concentration that were inferred from available satellite cloud and aerosol data products. Correlation results for a number of selected scenes containing dust and ice clouds are presented, and dust aerosol indirect effects on ice clouds are directly demonstrated from satellite observations.

© 2009 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: July 15, 2008
Revised Manuscript: December 3, 2008
Manuscript Accepted: December 7, 2008
Published: January 16, 2009

Citation
Steve Szu-Cheng Ou, Kuo-Nan Liou, Xingjuan Wang, Richard Hansell, Randy Lefevre, and Stephen Cocks, "Satellite remote sensing of dust aerosol indirect effects on ice cloud formation," Appl. Opt. 48, 633-642 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-3-633


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. N. Liou, S. C. Ou, and G. Koenig, “An investigation on the climatic effect of contrail cirrus,” in Air Traffic and the Environment Background, Tendencies and Potential Global Atmospheric Effects, U. Schumann, ed., Lecture Notes in Engineering (Springer-Verlag, 1990), pp. 154-169.
  2. D. Frankel, K. N. Liou, S. C. Ou, D. P. Wylie, and P. Menzel, “Observations of cirrus cloud extent and their impacts to climate,,” in Proceedings for the Ninth Conference on Atmospheric Radiation (American Meteorological Society, 1997), pp. 414-417.
  3. D. Wylie, D. L. Jackson, W. P. Menzel, and J. J. Bates, “Trends in global cloud cover in two decades of HIRS observations,” J. Climate 18, 3021-3031 (2005). [CrossRef]
  4. S. C. Ou and K. N. Liou, “Contrail/cirrus optics and radiation,” a subject specific white paper written under the support of the Federal Aviation Agency's Aviation-Climate Change Research Initiative (ACCRI) Project (2008), p. 77.
  5. P. Forster, V. Ramaswamy, and P. Artaxo, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, ed. (Cambridge University Press, 2007). [PubMed]
  6. P. Minnis, U. Schumann, D. R. Doelling, K. Gierens, and D. Fahey, “Global distribution of contrail radiative forcing,” Geophys. Res. Lett. 26, 1853-1856 (1999). [CrossRef]
  7. U. Lohmann and J. Feichter, “Global indirect aerosol effects: a review,” Atmos. Chem. Phys. 5, 715-737 (2005). [CrossRef]
  8. S. Twomey, “The influence of pollution on the shortwave albedo of clouds,” J. Atmos. Sci. 34, 1149-1152 (1977). [CrossRef]
  9. K. N. Liou and S. C. Ou, “The role of cloud microphysical processes in climate: an assessment from a one-dimensional perspective,” J. Geophys. Res. 94, 8599-8607 (1989). [CrossRef]
  10. B. A. Albrecht, “Aerosols, cloud microphysics, and fractional cloudiness,” Science 245, 1227-1230 (1989). [CrossRef] [PubMed]
  11. H. Grassl, “Possible changes of planetary albedo due to aerosol particles,” in Man's Impact on Climate, W. Bach, J. Pankrath, and W. Kellogg, eds. (Elsevier, 1979).
  12. J. Hansen, M. Sato, and R. Ruedy, “Radiative forcing and climate response,” J. Geophys. Res. 102, 6831-6864(1997). [CrossRef]
  13. J. A. Coakley Jr., J. R. Bernstein, and P. A. Durkee, “Effect of ship track effluents on cloud reflectivity,” Science 237, 1020-1021 (1987). [CrossRef] [PubMed]
  14. Y. J. Kaufman, I. Koren, L. A. Remer, D. Rosenfeld, and Y. Rudich, “The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean,” Proc. Natl. Acad. Sci. USA 102, 11207-11212 (2005). [CrossRef] [PubMed]
  15. W. Cantrell and A. Heymsfield, “Production of ice in tropospheric clouds: a review,” Bull. Am. Meteorol. Soc. 86, 795-807(2005). [CrossRef]
  16. Y. S. Chung and M. A. Yoon, “On the occurrence of yellow sand and atmospheric loadings,” Atmos. Environ. 30, 2387-2397(1996). [CrossRef]
  17. I. Chiapello, J. M. Prospero, J. R. Herman, and N. C. Hsu, “Detection of mineral dust over the North Atlantic Ocean and Africa with the Nimbus 7 TOMS,” J. Geophys. Res. 104, 9277-9291 (1999). [CrossRef]
  18. J. M. Prospero, “Long-term measurements of the transport of African mineral dust to the southeastern United States: implications for regional air quality,” J. Geophys. Res. 104, 15917-15927 (1999). [CrossRef]
  19. K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, “Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results,” Geophys. Res. Lett. 30, 35-1-35-4(2003). [CrossRef]
  20. C. M. Archuleta, P. J. DeMott, and S. M. Kreidenweis, “Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures,” Atmos. Chem. Phys. 5, 2617-2634 (2005). [CrossRef]
  21. L. A. Remer, D. Tanré, and Y. J. Kaufman, “Algorithm for remote sensing of tropospheric aerosol from MODIS: Collection 005,” MODIS Algorithm Theoretical Basis Document ATBDMOD-04 (NASA Goddard Space Flight Center, 2006), available at http://modis-atmos.gsfc.nasa.gov/_docs/ MOD04:MYD04_ATBD_C005_rev1.pdf.
  22. K. N. Liou, An Introduction to Atmospheric Radiation, 2nd ed. (Academic, 2002), p. 583.
  23. C. M. R. Platt, J. C. Scott, and A. C. Dilley, “Remote sounding of high clouds. Part IV: Optical properties of mid-latitude and tropical cirrus,” J. Atmos. Sci. 44, 729-747 (1987). [CrossRef]
  24. A. J. Heymsfield, C. Schmitt, A. Bansemer, G.-J. van Zadelhoff, M. J. McGill, C. Twohy, and D. Baumgardner, “Effective radius of ice particle populations derived from aircraft probes,” J. Atmos. Oceanic Technol. 23, 361-380 (2006). [CrossRef]
  25. I. N. Sokolik and O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths,” J. Geophys. Res. 104, 9423-9444 (1999). [CrossRef]
  26. G. A. d'Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols, Global Climatology and Radiative Characteristics (A. Deepak Publishing, 1991), p. 561.
  27. Y. J. Kaufman, L. A. Remer, D. Tanré, R.-R. Li, R. Kleidman, S. Mattoo, R. C. Levy, T. F. Eck, B. N. Holben, C. Ichoku, J. V. Martins, and I. Koren, “A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean,” IEEE Trans. Geosci. Remote Sensing 43, 2886-2897 (2005). [CrossRef]
  28. B.-C. Gao, Y. J. Kaufman, D. Tanre, and R.-.R. Li, “Distinguishing tropospheric aerosols from thin cirrus clouds for improved aerosol retrievals using the ratio of 1.38 μm and 1.24 μm channels,” Geophys. Res. Lett. 29, 1890-1892 (2002). [CrossRef]
  29. Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3-19 (1989). [CrossRef]
  30. P. Yang and K. N. Liou, “Light scattering by hexagonal ice crystals: comparison of finite difference time domain and geometric optics models,” J. Opt. Soc. Am. A 12, 162-176 (1995). [CrossRef]
  31. M. D. King, S.-C. Tsay, S. E. Platnick, M. Wang, and K. N. Liou, “Cloud retrieval algorithms for MODIS: optical thickness, effective particle radius, and thermodynamic phase,” MODIS Algorithm Theoretical Basis Document ATBDMOD-05 (NASA Goddard Space Flight Center, 1997), version 5, available at http://modis-atmos.gsfc.nasa.gov/_docs/atbd_mod05.pdf.
  32. P. J. DeMott, K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. Brooks, A. J. Prenni, and S. M. Kreidenweis, “African dust aerosols as atmospheric ice nuclei,” Geophys. Res. Lett. 30, ASC 1-1-1-4 (2003). [CrossRef]
  33. G. Feingold, W. L. Eberhard, D. E. Veron, and M. Previdi, “First measurements of the Twomey indirect effect using ground-based remote sensors,” Geophys. Res. Lett. 30, 1287-1289 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited