OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 30 — Oct. 20, 2009
  • pp: 5668–5677

Insect monitoring with fluorescence lidar techniques: feasibility study

Mikkel Brydegaard, Zuguang Guan, Maren Wellenreuther, and Sune Svanberg  »View Author Affiliations


Applied Optics, Vol. 48, Issue 30, pp. 5668-5677 (2009)
http://dx.doi.org/10.1364/AO.48.005668


View Full Text Article

Enhanced HTML    Acrobat PDF (1087 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the possibilities of light detection and ranging (lidar) techniques to study migration of the damselfly species Calopteryx splendens and C. virgo. Laboratory and testing-range measurements at a distance of 60 m were performed using dried, mounted damselfly specimens. Laboratory measurements, including color photography in polarized light and spectroscopy of reflectance and induced fluorescence, reveal that damselflies exhibit reflectance and fluorescence properties that are closely tied to the generation of structural color. Lidar studies on C. splendens of both genders show that gender can be re motely determined, especially for specimens that were marked with Coumarin 102 and Rhodamine 6G dyes. The results obtained in this study will be useful for future field experiments, and provide guidelines for studying damselflies in their natural habitat using lidar to survey the air above the river surface. The findings will be applicable for many other insect species and should, therefore, bring new insights into migration and movement patterns of insects in general.

© 2009 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(030.1670) Coherence and statistical optics : Coherent optical effects
(280.3640) Remote sensing and sensors : Lidar
(300.2530) Spectroscopy : Fluorescence, laser-induced
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(240.5698) Optics at surfaces : Reflectance anisotropy spectroscopy

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: July 22, 2009
Revised Manuscript: September 27, 2009
Manuscript Accepted: September 27, 2009
Published: October 12, 2009

Virtual Issues
Vol. 4, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Mikkel Brydegaard, Zuguang Guan, Maren Wellenreuther, and Sune Svanberg, "Insect monitoring with fluorescence lidar techniques: feasibility study," Appl. Opt. 48, 5668-5677 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-30-5668


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1984).
  2. R. M. Measures, ed., Laser Remote Chemical Analysis (Wiley-Interscience, 1988).
  3. M.Sigrist, ed., Air Pollution Monitoring with Optical Techniques (Wiley, 1993).
  4. C. Weitkamp, ed., LIDAR: Range-Resolved Optical Remote Sensing of the Atmosphere, Springer Series in Optical Sciences (Springer, 2005).
  5. T. Fujii and T. Fukuchi, eds., Laser Remote Sensing (CRC, 2005).
  6. S. Svanberg, “LIDAR,” in Springer Handbook of Lasers and Optics, F.Träger, ed. (Springer, 2007), pp. 1031-1052.
  7. P. Weibring, H. Edner, and S. Svanberg, “Versatile mobile lidar system for environmental monitoring,” Appl. Opt. 42, 3583-3594 (2003). [CrossRef]
  8. S. Harsdorf, M. Janssen, R. Reuter, B. Wachowic, and R. Willkomm, “Lidar as part of an ROV-based sensor network for the detection of chemical pollutants on the seafloor,” in Oceans '98 Conference Proceedings (IEEE, 1998), Vol. 3, pp. 1250-1253.
  9. M. Sowinska, B. Cunin, F. Heisel, and J. A. Miehé, “New UV-A laser-induced fluorescence imaging system for near-field remote sensing of vegetation: characteristics and performances,” Proc. SPIE 3707, 91-102 (1999). [CrossRef]
  10. D. M. Winker, C. A. Hostetler, M. A. Vaughan, and A. H. Omar, “Mission, Instrument, and Algorithms Overview,” PC-SCI-202.01 (NASA, 2006), www-calipso.larc.nasa.gov.
  11. J. A. Shaw, N. L. Seldomridge, D. L. Dunkle, P. W. Nugent, L. H. Spangler, J. J. Bromenshank, C. B. Henderson, J. H. Churnside, and J. J. Wilson, “Polarization lidar measurements of honey bees in flight for locating land mines,” Opt. Express 13, 5853-5863 (2005). [CrossRef]
  12. S. Svanberg, “Laser fluorescence spectroscopy in environmental monitoring,” in Optoelectronics for Environmental Science, S. Martellucci and A. N. Chester, eds. (Plenum1990), pp. 15-27.
  13. H. Edner, J. Johansson, S. Svanberg, and E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471-2479 (1994). [CrossRef]
  14. P. Weibring, Th. Johansson, H. Edner, S. Svanberg, B. Sundnér, V. Raimondi, G. Cecchi, and L. Pantani, “Fluorescence lidar imaging of historical monuments,” Appl. Opt. 40, 6111-6120(2001). [CrossRef]
  15. S. Svanberg, “Fluorescence spectroscopy and imaging of LIDAR targets,” in Laser Remote Sensing, T. Fujii and T. Fukuchi eds. (CRC, 2005), Chap. 6.
  16. Ø. Farsund, G. Rustad, I. Kåsen, and T. V. Haavardsholm, “Required spectral resolution for bioaerosol detection algorithms using standoff laser induced fluorescence measurements,” IEEE Sens. J. 6 (2009).
  17. D. N. Whiteman, S. H. Melfi, and R. A. Ferrare, “Raman LIDAR system for the measurement of water-vapor and aerosols in the earths atmosphere,” Appl. Opt. 31, 3068-3082 (1992). [CrossRef]
  18. V. E. Zuev, Y. D. Kopytin, V. A. Korolkov, M. E. Levitskii, M. F. Nebolsin, B. G. Sidorov, and N. P. Soldatkin, in Proceedings of the 13th International Laser Radar Conference (NASA Langley Research Center, 1986).
  19. S. Palanco, J. M. Baena, and J. J. Laserna, “Open-path laser-induced plasma spectrometry for remote analytical measurements on solid surfaces,” Spectrochim. Acta B 57, 591-599(2002). [CrossRef]
  20. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown using filamentation in air,” Appl. Phys. Lett. 85, 3977-3979 (2004). [CrossRef]
  21. R. Grönlund, M. Lundqvist, and S. Svanberg, “Remote imaging laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy using nanosecond pulses from a mobile lidar system,” Appl. Spectrosc. 60, 853-859 (2006). [CrossRef]
  22. T. Fujii, N. Goto, M. Miki, T. Nayuki, and K. Nemoto, “Lidar measurement of constituents of microparticles in air by laser-induced breakdown spectroscopy using femtosecond terawatt laser pulses,” Opt. Lett. 31, 3456-3458 (2006). [CrossRef]
  23. M. Skolnik, Introduction to Radar Systems, 3rd ed. (McGraw-Hill, 2002).
  24. J. C. Toomay and P. J. Hannen, Radar Principles for the Non-Specialist, 3rd ed. (SciTech, 2004).
  25. S. A. Gauthreaux Jr. and C. G. Belser, “Radar ornithology and biological conservation,” The Auk 120, 266-277 (2003). [CrossRef]
  26. J. W. Chapman, D. R. Reynolds, and A. D. Smith, “Vertical-looking radar: a new tool for monitoring high-altitude insect migration,” BioScience 53, 503-511 (2003). [CrossRef]
  27. D. T. Gjessing, Target Adaptive Matched Illumination Radar: Principles and Applications (Institution of Engineering and Technology, 1986).
  28. S. P. Lohmeier, S. M. Sekelsky, J. M. Firda, G. A. Sadowy, and R. E. McIntosh, “Classification of particles in stratiform clouds using the 33 and 95 GHz polarimetric cloud profiling radar system (CPRS),” IEEE Trans. Geosci. Remote Sens. 35, 256-270 (1997). [CrossRef]
  29. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, and B. Öström, “Underwater laser-radar experiments for bathymetry and fish-school detection,” Göteborg Institute of Physics Reports GIPR-162 (Chalmers University of Technology, Göteborg, 1978).
  30. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, and B. Öström, “Marine laser probing: results of a field test,” Meddelanden från Havsfiskelaboratoriet No. 245 (Swedish Department of Fishery, Stockholm, 1979).
  31. K. S. Repasky, J. A. Shaw, R. Scheppele, C. Melton, J. L. Carsten, and L. H. Spangler, “Optical detection of honeybees by use of wing-beat modulation of scattered laser light for locating explosives and land mines,” Appl. Opt. 45, 1839-1843 (2006). [CrossRef]
  32. D. S. Hoffman, A. R. Nehrir, K. S. Repasky, J. A. Shaw, and J. L. Carlsten, “Range-resolved optical detection of honeybees by use of wing-beat modulation of scattered light for locating land mines,” Appl. Opt. 46, 3007-3012 (2007). [CrossRef]
  33. Von R. Bloch, B. Bruderer, and P. Steiner, “Flugverhalten nächtlich ziehender Vögel--Radardaten über den Zug verschiedener auf einem Alpenpass,” Die Vodelwarte 31, 119-146 (1981).
  34. P. S. Corbet, Behavior and Ecology of Odonata (Harley, 1999).
  35. M. Campero, F. Ollevier, and R. Stoks, “Ecological relevance and sensitivity depending on the exposure time for two biomarkers,” Environ. Toxicol. 22, 572-581 (2007). [CrossRef]
  36. C. A. Deutsch, J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, D. C. Haak, and P. R. Martin, “Impacts of climate warming on terrestrial ectotherms across latitude,” Proc. Natl. Acad. Sci. USA 105, 6668-6672 (2008). [CrossRef]
  37. C. Parmesan, “Ecological and evolutionary responses to recent climate change,” Annu. Rev. Ecol. Evol. Syst. 37, 637-669 (2006). [CrossRef]
  38. C. N. Parmesan, C. Ryrholm, C. Steganescu, J. K. Hill, C. D. Thomas, B. Descimon, B. Huntley, L. Kaila, J. Kullberg, T. Tammaru, W. J. Tennent, J. A. Thomas, and M. Warren, “Poleward shifts in geographical ranges of butterfly species associated with regional warming,” Nature 399, 579-583 (1999). [CrossRef]
  39. R. Hickling, D. B. Roy, J. K. Hill, and C. D. Thomas, “A northward shift of range margins in British Odonata,” Glob. Change Biol. 11, 502-506 (2005). [CrossRef]
  40. T. J. Case and M. L. Taper, “Interspecific competition, environmental gradients, gene flow, and the coevolution of species' borders,” Am. Nat. 155, 583-605 (2000). [CrossRef]
  41. D. Garant, S. E. Forde, and A. P. Hendry, “The multifarious effects of dispersal and gene flow on contemporary adaptation,” Funct. Ecol. 21, 434-443 (2007). [CrossRef]
  42. J. R. Hagler and C. G. Jackson, “Methods for marking insects: current techniques and future prospects,” Annu. Rev. Entomol. 46, 511-543 (2001). [CrossRef]
  43. M. D. Ginzel and L. M. Hanks, “Evaluation of synthetic hydrocarbons for mark-recapture studies on the red milkweed beetle,” Journal of chemical ecology 28, 1037-1043 (2002). [CrossRef]
  44. R. W. Piper, “A novel technique for the individual marking of smaller insects,” Entomol. Exper. Appl. 106, 155-157(2003). [CrossRef]
  45. A. E. A. Stephens, A. M. Barrington, V. A. Bush, N. M. Fletcher, V. Mitchell, and J. D. M. Suckling, “Evaluation of dyes for marking painted apple moths (Teia anartoides Walker, Lep. Lymantriidae) used in a sterile insect release program,” Aust. J. Entomol. 47, 131-136 (2008). [CrossRef]
  46. T. P. Gosden and E. I. Svensson, “Density-dependent male mating harassment, female resistance and male mimicry,” Am. Nat. 173, 709-721 (2009). [CrossRef]
  47. L. Celander, K. Fredriksson, B. Galle, and S. Svanberg, “Investigation of laser-induced fluorescence with applications to remote sensing of environmental parameters,” Göteborg Institute of Physics Reports GIPR-149 (Chalmers University of Technology, Göteborg 1978).
  48. T. D. Schultz, C. N. Anderson, and L. B. Symes, “The conspicuousness of colour cues in male pond damselflies depends on ambient light and visual system,” Anim. Behav. 76, 1357-1364 (2008). [CrossRef]
  49. H. Edner, J. Johansson, S. Svanberg, E. Wallinder, M. Bazzani, B. Breschi, G. Cecchi, L. Pantani, B. Radicati, V. Raimondi, D. Tirelli, G. Valmori, and P. Mazzinghi, “Laser-induced fluorescence monitoring of vegetation in Tuscany,” EARSeL Adv. Remote Sens. 1, 119-130 (1992).
  50. G. Rüppel, D. Hilfert-Rüppel, G. Rehfeldt, and C. Schütte, Die Prachtlibellen Europas, Die neue Brehm-Bücherei Bd. 654 (Westarp Wissenschaften, 2005).
  51. Lord Rayleigh, “The iridescant colours of birds and insects,” Proc. R. Soc. A Biol. Sci. 128, 624-641 (1930). [CrossRef]
  52. M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99, 1935-1961 (1999). [CrossRef]
  53. A. R. Parker and N. Martini, “Structural colour in animals--simple to complex optics,” Opt. Laser Technol. 38, 315-322(2006). [CrossRef]
  54. S. Kinoshita, S. Yoshioka, Y. Fujii, and N. Okamoto, “Photophysics of structural color in the morpho butterflies,” Forma 17, 103-121 (2002).
  55. P. Vukusic, J. R. Sambles, and C. R. Lawrence, “Structurally assisted blackness in butterfly scales,” Proc. R. Soc. Biol. Sci. 271, 237-239 (2004).
  56. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Now you see it--now you don't,” Nature 410, 36 (2001). [CrossRef]
  57. I. R. Hooper, P. Vukusic, and R. J. Wootton, “Detailed optical study of the transparent wing membranes of the dragonfly Aeshna cyanea,” Opt. Express 14, 4891-4897 (2006). [CrossRef]
  58. J. A. Noyes, P. Vukusic, and I. R. Hooper, “Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle,” Opt. Express 15, 4351-4358 (2007). [CrossRef]
  59. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999). [CrossRef]
  60. T. Wagner, S. Beirle, T. Deutschmann, M. Grzegorski, and U. Platt, “Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS) in the red spectral range,” Atmos. Chem. Phys. 7, 69-79(2007).
  61. R. O. Prum, J. A. Cole, and R. H. Torres, “Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering,” J. Exp. Biol. 207, 3999-4009 (2004). [CrossRef]
  62. S. Fizeau-Braesch, “Pigments and color changes,” Annu. Rev. Entomol. 17, 403-424 (1972). [CrossRef]
  63. J. M. Gallas and M. Eisner, “Fluorescence of melanin--dependence upon excitation wavelength and concentration,” Photochem. Photobiol. 45, 595-600 (1987). [CrossRef]
  64. G. Luna-Bárcenas, B. Gonzalez-Campos, E. A. Elizalde-Peña, E. Vivaldo-Lima, J. F. Louvier-Hernández, Y. V. Vorobiev, and J. González-Hernández, “FEMO modelling of optical properties of natural biopolymers chitin and chitosan,” Phys. Stat. Sol. 5, 3736-3739 (2008). [CrossRef]
  65. L. Q. Wu, R. Ghodssi, Y. A. Elabd, and G. F. Payne, “Biomimectic pattern transfer,” Adv. Funct. Mater. 15, 189-195(2005). [CrossRef]
  66. S. N. Gorba, A. Keselb, and J. Bergera, “Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering,” Arthropod Struct. Dev. 29, 129-135 (2000). [CrossRef]
  67. A. Ounis, Z. G. Cerovic, J. M. Briantais, and I. Moya, “DE-FLIDAR: a new remote sensing instrument for estimation of epidermal UV absorption in leaves and canopies,” in Proceedings of European Association of Remote Sensing Laboratories (EARSeL)-SIG-Workshop LIDAR, Dresden/FRG (EARSeL, 2001), Vol. 1, pp. 196-204.
  68. J. F. Jacobs, G. J. M. Koper, and W. N. J. Ursem, “UV protective coatings: a botanical approach,” Prog. Org. Coatings 58, 166-171 (2007).
  69. E.Warrant, ed., Invertebrate Vision (Cambridge U. Press, 2006).
  70. M. Wellereuther, M. Brydegaard, and E. Svensson are preparing a manuscript called “Role of female wing colour and male mate choice in premating isolation in allopatric and sympatric populations of damselflies”.
  71. G. De Marchi, “Precopulatory reproductive isolation and wing colour dimorphism in Calopteryx splendens females in southern Italy (Zygoptera: Calopterygidae),” Odonatologica 19, 243-250 (1990).
  72. M. J. Rantala, J. Koskimäki, J. Suhonen, J. Taskinen, and K. Tynkkynen, “Immunocompetence, developmental stability and wing spot size in Calopteryx splendens,” Proc. R. Soc. B 267, 2453-2457 (2000). [CrossRef]
  73. E. I. Svensson, L. Kristoffersen, K. Oskarsson, and S. Bensch, “Molecular population divergence and sexual selection on morphology in the banded demoiselle (Calopteryx splendens),” Heredity 93, 423-433 (2004). [CrossRef]
  74. K. Tynkkynen, J. S. Kotiaho, M. Luojumäki, and J. Suhonen, “Interspecific territoriality in Calopteryx damselflies: the role of secondary sexual characters,” Anim. Behav. 71, 299-306 (2006). [CrossRef]
  75. U. Gustafsson, S. Pålsson, and S. Svanberg, “Compact fiber-optic fluorosensor using a continuous-wave violet diode laser and an integrated spectrometer,” Rev. Sci. Intrum. 71, 3004-3006 (2000). [CrossRef]
  76. C. af Klinteberg, M. Andreasson, O. Sandström, S. Andersson-Engels, and S. Svanberg, “Compact medical fluorosensor for minimally invasive tissue characterization,” Rev. Sci. Instrum. 76, 034303 (2005). [CrossRef]
  77. H. Edner, P. Ragnarson, S. Svanberg, E. Wallinder, R. Ferrara, B. E. Maserti, and R. Bargagli, “Atmospheric mercury mapping in a cinnabar mining area,” Sci. Total Environ. 1331-15 (1993). [CrossRef]
  78. E. Wallinder, H. Edner, P. Ragnarson, and S. Svanberg, “Vertically sounding ozone LIDAR system based on a KrF excimer laser,” Phys. Scr. 55, 714-718 (1997). [CrossRef]
  79. C. af Klinteberg, A. Pifferi, S. Andersson-Engels, R. Cubeddu, and S. Svanberg, “In vivo absorption spectroscopy of tumor sensitizers using femtosecond white light,” Appl. Opt. 44, 2213-2220 (2005). [CrossRef]
  80. Ch. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fibre,” Opt. Express 12, 4103-4112(2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited