OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 30 — Oct. 20, 2009
  • pp: 5696–5703

Mid-infrared ethene detection using difference frequency generation in a quasi-phase-matched Li Nb O 3 waveguide

Roberto Grilli, Luca Ciaffoni, Gus Hancock, Robert Peverall, Grant A.D. Ritchie, and Andrew J. Orr-Ewing  »View Author Affiliations

Applied Optics, Vol. 48, Issue 30, pp. 5696-5703 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (720 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A periodically poled Li Nb O 3 (PPLN) crystal waveguide has been used to produce up to 200 μW of mid-infrared light around 3081 cm 1 with a wide tunability range of 35 cm 1 . Two commercial near-infrared diode lasers at 1.064 μm (pump) and 1.583 μm (signal) are mixed in a nonlinear optical crystal to achieve difference frequency generation. The 48 mm long directly-bonded quasi-phase-matched (QPM) PPLN waveguide shows a conversion efficiency of 12.3 % W 1 . Applications in trace gas detection have been demonstrated for ethene, using multipass absorption coupled with wavelength modulation spectroscopy, and cavity enhanced absorption spectroscopy with a lock-in detection scheme: bandwidth reduced sensitivities of α min = 8 × 10 9 and 1.6 × 10 8 cm 1 Hz 1 / 2 ( 2 σ ) , respectively, have been achieved.

© 2009 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(190.4360) Nonlinear optics : Nonlinear optics, devices
(280.1120) Remote sensing and sensors : Air pollution monitoring
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 21, 2009
Revised Manuscript: September 21, 2009
Manuscript Accepted: September 25, 2009
Published: October 13, 2009

Roberto Grilli, Luca Ciaffoni, Gus Hancock, Robert Peverall, Grant A.D. Ritchie, and Andrew J. Orr-Ewing, "Mid-infrared ethene detection using difference frequency generation in a quasi-phase-matched LiNbO3 waveguide," Appl. Opt. 48, 5696-5703 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. E. Vogler and M. W. Sigrist, “Near-infrared laser based cavity ringdown spectroscopy for applications in petrochemical industry,” Appl. Phys B 85, 349-354 (2006). [CrossRef]
  2. J. J. Giovannoni, “Genetic regulation of fruit development and ripening,” Plant Cell Physiol. 16, S170-S180 (2004).
  3. S. M. Cristescu, R. Berkelmans, S. te Lintel Hekkert, B. H. Timmerman, D. H. Parker, and F. J. M. Harren, “Photoacoustic trace gas detection of ethene released by UV-induced lipid peroxidation in humans,” Proc. SPIE 4162, 101-107(2000). [CrossRef]
  4. A. M. Parkes, R. E. Lindley, and A. J. Orr-Ewing, “Absorption cross-sections and pressure broadening of rotational lines in the ν5+ν9 band of ethene measured by diode laser cavity ring down spectroscopy,” Phys. Chem. Chem. Phys. 6, 5313-5317(2004). [CrossRef]
  5. R. G. Derwent, T. J. Davies, M. Delaney, G. J. Dollard, R. A. Field, P. Dumitrean, P. D. Nason, B. M. R. Jones, and S. A. Pelper, “Analysis and interpretation of the continuous hourly monitoring data for 26 C2-C8 hydrocarbons at 12 United Kingdom sites during 1996,” Atmos. Environ. 34, 297-312 (2000). [CrossRef]
  6. L. Hagerman, W. J. Lonneman, and V. P. Aneja, “Characterization of non-methane hydrocarbons in the rural southeast United States,” Atmos. Environ. 31, 4017-4038 (1997). [CrossRef]
  7. A. M. Parkes, R. E. Lindley, and A. J. Orr-Ewing, “Combining preconcentration of air samples with cavity ring-down spectroscopy for detection of trace volatile organic compounds in the atmosphere,” Anal. Chem. 76, 7329-7335 (2004). [CrossRef] [PubMed]
  8. S. Y. Zhang, D. G. Revin, J. W. Cockburn, K. Kennedy, A. B. Krysa, and M. Hopkinson, “λ~3.1 μm room temperature InGaAs/AlAsSb/InP quantum cascade lasers,” Appl. Phys. Lett. 94, 031106 (2009). [CrossRef]
  9. R. Q. Yang, C. J. Hill, K. Mansour, Y. M. Qiu, A. Soibel, R. E. Muller, and P. M. Echternach, “Distributed feedback mid-IR Interband cascade lasers at thermoelectric cooler temperatures,” IEEE J. Sel. Top. Quantum Electron. 13, 1074-1078 (2007). [CrossRef]
  10. W. Chen, J. Cousin, E. Poullet, J. Burie, D. Boucher, X. Gao, M. W. Sigrist, and F. K. Tittel, “Continuous-wave mid-infrared laser sources based on difference frequency generation” [“Sources lasers continues dans l'infrarouge par génération de différence de fréquences”], Compt. Rend. Phys. 8, 1129-1150 (2007). [CrossRef]
  11. L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, “Widely phase-matched tunable difference-frequency generation in periodically poled LiNbO3 crystal,” Opt. Commun. 281, 1686-1692 (2008). [CrossRef]
  12. P.-M. Flaud and J. Orphal, “A continuous-wave difference-frequency generation laser operating in the mid-infrared (3-5 μm) region for accurate line intensity measurements,” Infrared Phys. Technol. 51, 322-331 (2008). [CrossRef]
  13. O. Tadanaga, T. Yanagawa, Y. Nishida, K. Magari, T. Umeki, M. Asobe, and H. Suzuki, “Widely tunable 2.3 μm-band difference frequency generation in quasiphase-matched LiNbO3 ridge waveguide using index dispersion control,” J. Appl. Phys. 102, 033102 (2007). [CrossRef]
  14. L. Ciaffoni, R. Grilli, G. Hancock, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “3.5 μm high-resolution gas sensing employing a LiNbO3 QPM-DFG waveguide module,” Appl. Phys. B 94, 517-525 (2009). [CrossRef]
  15. Z. Cao, X. Gao, L. Deng, W. D. Chen, Y. Yuan, W. Zhang, and Z. Gong, “A difference frequency generation spectrometer and its detection of atmospheric N2O,” Spectrochim. Acta Part A 68, 74-77 (2007). [CrossRef]
  16. H. Y. Clark, L. Corner, W. Denzer, G. Hancock, A. Hutchinson, M. Islam, R. Peverall, and G. A. D. Ritchie, “Difference frequency generation in periodically poled lithium niobate and its use in the detection of atmospheric methane,” Chem. Phys. Lett. 399, 102-108 (2004). [CrossRef]
  17. P. Maddaloni, G. Gagliardi, P. Malara, and P. De Natale, “A 3.5 mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy,” Appl. Phys. B 80, 141-145 (2005). [CrossRef]
  18. R. Barron-Jimenez, J. A. Caton, T. N. Anderson, R. P. Lucht, T. Walther, S. Roy, M. S. Brown, and J. R. Gord, “Application of a difference-frequency-mixing based diode-laser sensor for carbon monoxide detection in the 4.4-4.8 μm spectral region,” Appl. Phys. B 85, 185-197 (2006). [CrossRef]
  19. W. Denzer, G. Hancock, A. Hutchinson, M. Munday, R. Peverall, and G. A. D. Ritchie, “Mid-infrared generation and spectroscopy with a PPLN ridge waveguide,” Appl. Phys. B 86, 437-442 (2007). [CrossRef]
  20. D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer,” Appl. Phys. B 85, 437-443 (2006). [CrossRef]
  21. O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, “Diode-laser based 3 mW DFG at 3.4 μm from wavelength conversion module using direct-bonded QPM-LN ridge waveguide,” Electron. Lett. 42, 988-989 (2006). [CrossRef]
  22. R. Engeln, G. Berden, R. Peeters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Intrum. 69, 3763-3769(1998). [CrossRef]
  23. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565-607 (2000). [CrossRef]
  24. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904-4910 (2001). [CrossRef]
  25. M. Mazurenka, A. J. Orr-Ewing, R. Peverall, and G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Annu. Rep. Prog. Chem. Sect. C 101, 100-142 (2005). [CrossRef]
  26. L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102-2116 (1995). [CrossRef]
  27. M. Asobe, Y. Nishida, O. Tadanaga, H. Miyazawa, and H. Suzuki, “Wavelength conversion using quasi-phase matched LiNbO3 waveguides,” IEICE Trans. Electron. E88-C, 335-341(2005). [CrossRef]
  28. O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, “Efficient 3 μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides,” Appl. Phys. Lett. 88, 061101 (2006). [CrossRef]
  29. D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J. A. Mitchell, and L. W. Hollberg, “Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers,” Appl. Phys. B 70, 747-750 (2000). [CrossRef]
  30. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553-1555 (1997). [CrossRef]
  31. Y. Nishida, NTT Electronics Corporation, 3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa, 243-0198 Japan (personal communication, 2009).
  32. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Couderi, V. Dana, V. M. Devi, S. Fally, J.-M. Flaudi, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533-572(2009). [CrossRef]
  33. The HITRAN database is available from http://www.hitran.com.
  34. J. Henningsen and H. Simonsen, “Quantitative wavelength-modulation spectroscopy without certified gas mixtures,” Appl. Phys. B 70, 627-633 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited