OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 30 — Oct. 20, 2009
  • pp: 5713–5717

Microreflectance difference spectrometer based on a charge coupled device camera: surface distribution of polishing-related linear defect density in GaAs (001)

L. F. Lastras-Martínez, R. Castro-García, R. E. Balderas-Navarro, and A. Lastras-Martínez  »View Author Affiliations


Applied Optics, Vol. 48, Issue 30, pp. 5713-5717 (2009)
http://dx.doi.org/10.1364/AO.48.005713


View Full Text Article

Enhanced HTML    Acrobat PDF (520 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a microreflectance difference ( μRD ) spectrometer based on a charge coupled device (CCD), in contrast to most common RD spectrometers that are based on a photomultiplier or a photodiode as a light detector. The advantage of our instrument over others is the possibility to isolate the RD spectrum of specific areas of the sample; thus topographic maps of the surface can be obtained. In our setup we have a maximum spatial resolution of approximately 2.50 μ m × 2.50 μ m and a spectral range from 1.2 to 5.5 eV . To illustrate the performance of the spectrometer, we have measured strains in mechanically polished GaAs ( 001 ) single crystals.

© 2009 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6470) Spectroscopy : Spectroscopy, semiconductors

ToC Category:
Spectroscopy

History
Original Manuscript: August 3, 2009
Revised Manuscript: October 2, 2009
Manuscript Accepted: October 4, 2009
Published: October 20, 2009

Citation
L. F. Lastras-Martínez, R. Castro-García, R. E. Balderas-Navarro, and A. Lastras-Martínez, "Microreflectance difference spectrometer based on a charge coupled device camera: surface distribution of polishing-related linear defect density in GaAs (001)," Appl. Opt. 48, 5713-5717 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-30-5713


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. E. Aspnes and A. A. Studna, “Anisotropies in the above-band-gap optical spectra of cubic semiconductors,” Phys. Rev. Lett. 54, 1956-1959 (1985). [CrossRef] [PubMed]
  2. P. Weightman, D. S. Martin, R. J. Cole, and T. Farrell, “Reflection anisotropy spectroscopy,” Rep. Prog. Phys. 68, 1251-1341(2005). [CrossRef]
  3. G. E. Isted, P. D. Lane, and R. J. Cole, “Effect of thermally induced surface defects on the optical anisotropy of Ag(110),” Phys. Rev. B 79, 205424 (2009). [CrossRef]
  4. L. F. Lastras-Martínez and A. Lastras-Martínez, “Dislocation-induced effects in the reflectance-difference spectrum of semi-insulating GaAs (100),” Solid State Commun. 98, 479-483(1996). [CrossRef]
  5. L. F. Lastras-Martínez and A. Lastras-Martínez, “Reflectance anisotropy of GaAs(100): Dislocation-induced piezo-optic effects,” Phys. Rev. B 54, 10726-10735 (1996). [CrossRef]
  6. Y. H. Chen, Z. G. Wang, J. J. Qian, and Z. Yang, “Polishing-related optical anisotropy of semi-insulating GaAs studied by reflectance difference spectroscopy,” J. Appl. Phys. 88, 1695-1697 (2000). [CrossRef]
  7. L. F. Lastras-Martínez and A. Lastras-Martínez, “Reflectance-difference spectroscopy of semi-insulating GaAs (110) around the fundamental gap,” Phys. Rev. B 64, 085309 (2001). [CrossRef]
  8. A. Lastras-Martínez, R. E. Balderas-Navarro, and L. F. Lastras-Martínez, “Linear electro-optic reflectance modulated spectra of GaAs (001) around E1 and E11,” Thin Solid Films 373, 207-210 (2000). [CrossRef]
  9. L. F. Lastras-Martínez, J. M. Flores-Camacho, R. E. Balderas-Navarro, M. Chavira-Rodríguez, A. Lastras-Martínez, and M. Cardona, “Effect of reconstruction-induced strain on the reflectance difference spectroscopy of GaAs (001) around E1 and E11 transitions,” Phys. Rev. B 75, 235315(2007). [CrossRef]
  10. D. Rönnow, L. F. Lastras-Martínez, M. Cardona, and P. V. Santos, “Determination of the piezo-optical properties of semiconductors above the fundamental gap by means of reflectance difference spectroscopy,” J. Opt. Soc. Am. A 16, 568-573 (1999). [CrossRef]
  11. L. F. Lastras-Martínez, R. E. Balderas-Navarro, M. Chavira-Rodríguez, J. M. Flores-Camacho, and A. Lastras-Martínez, “Strain induced optical anisotropies in zinc blende semiconductor,” Phys. Status Solidi B 240, 500-508 (2003). [CrossRef]
  12. L. F. Lastras-Martínez, M. Chavira-Rodríguez, R. E. Balderas-Navarro, J. M. Flores-Camacho, and A. Lastras-Martínez, “Reflectance difference spectroscopy of GaAs (001) under a [110] uniaxial stress,” Phys. Rev. B 70, 035306 (2004). [CrossRef]
  13. A. Lastras-Martínez, I. Lara-Velázquez, R. E. Balderas-Navarro, J. Ortega-Gallegos, S. Guel-Sandoval, and L. F. Lastras-Martínez, “Reflectance-difference spectroscopy as an optical probe for in situ determination of doping levels in GaAs,” Phys. Status Solidi C 5, 2565-2568 (2008). [CrossRef]
  14. K. Sawano, S. Koh, Y. Shiraki, N. Usami, and K. Nakagawa, “In-plane strain fluctuation in strained-Si/SiGe heterostructures,” Appl. Phys. Lett. 83, 4339-4341 (2003). [CrossRef]
  15. P. Puech, F. Demangeot, J. Frandon, C. Pinquier, M. Kuball, V. Domnich, and Y. Gogotsi, “GaN nanoindentation: a micro-Raman spectroscopy study of local strain fields,” J. Appl. Phys. 96, 2853-2856 (2004). [CrossRef]
  16. G. Irmer and M. Jurisch, “Micro-Raman study of strain fields around dislocations in GaAs,” Phys. Status Solidi A 204, 2309-2318 (2007). [CrossRef]
  17. N. Gmeinwieser, P. Gottfriedsen, U. T. Schwarz, W. Wegscheider, R. Clos, A. Krtschil, A. Krost, A. Weimar, G. Brüderl, A. Lell, and V. Härle, “Local strain and potential distribution induced by single dislocations in GaN,” J. Appl. Phys. 98, 116102 (2005). [CrossRef]
  18. N. Gmeinwieser and U. T. Schwarz, “Strain of single edge dislocations in bulk GaN,” Phys. Status Solidi B 244, 1857-1861 (2007). [CrossRef]
  19. B. Koopmans, B. Richards, P. Santos, K. Eberl, and M. Cardona, “In-plane optical anisotropy of GaAs/AlAs multiple quantum wells probed by microscopic reflectance difference spectroscopy,” Appl. Phys. Lett. 69, 782-784 (1996). [CrossRef]
  20. M. Yamada, “High-sensitivity computer-controlled infrared polariscope,” Rev. Sci. Instrum. 64, 1815-1821 (1993). [CrossRef]
  21. H. D. Geiler, H. Karge, M. Wagner, St. Eichler, M. Jurisch, U. Kretzer, and M. Scheffer-Czygan, “Photoelastic characterization of residual stress in GaAs-wafers,” Mater. Sci. Semicond. Process. 9, 345-350 (2006). [CrossRef]
  22. L. F. Lastras-Martínez, R. Castro-Garca, R. E. Balderas-Navarro, and A. Lastras-Martínez, “Reflectance difference spectrometer based on the use of a CCD camera,” Proc. SPIE 6422, 64221C (2007). [CrossRef]
  23. C. G. Hu, L. D. Sun, Y. N. Li, M. Hohage, J. M. Flores-Camacho, X. T. Hu, and P. Zeppenfeld, “Retardation correction for photoelastic modulator-based multichannel reflectance difference spectroscopy,” J. Opt. Soc. Am. A 25, 1240-1245(2008). [CrossRef]
  24. L. F. Lastras-Martínez, A. Lastras-Martínez, and R. E. Balderas-Navarro, “A spectrometer for the measurement of reflectance-difference spectra,” Rev. Sci. Instrum. 64, 2147-2152 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited