OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 30 — Oct. 20, 2009
  • pp: 5811–5822

Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements

Peter Amsler, Olaf Stetzer, Martin Schnaiter, Evelyn Hesse, Stefan Benz, Ottmar Moehler, and Ulrike Lohmann  »View Author Affiliations

Applied Optics, Vol. 48, Issue 30, pp. 5811-5822 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1679 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate hydrometeor habits at the AIDA chamber with a newly developed in-line holographic microscope HOLographic Imager for Microscopic Objects (HOLIMO). Sizes and habits of ice crystals and droplets in a mixed-phase cloud experiment are related to relative humidity with respect to ice ( R H ice ), temperature (T), and experiment time. This experiment is initiated with supercooled water drops. As a result, ice crystals within a maximum particle diameter size range of 2 to 118 μm (average size of 19 μm ) are detected and 63% of them reveal regular habits. The observed particle habits match those predicted for a given R H ice and T. Two different growth modes emerge from this cloud. The first one appears during water injection and reveals mainly optical particle sizes in the range of 5 to 250 μm . The second mode grows to sizes of 5 to 63 μm , just after the particles of the first one fall out. It is found that an increasing aspect ratio χ of maximum length over thickness from 2 to 20 as obtained by HOLIMO corresponds to a decreasing linear depolarization ratio from 0.1 to 0.04, as independently obtained by depolarization measurements.

© 2009 Optical Society of America

OCIS Codes
(010.2940) Atmospheric and oceanic optics : Ice crystal phenomena
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: March 26, 2009
Revised Manuscript: September 23, 2009
Manuscript Accepted: September 27, 2009
Published: October 16, 2009

Peter Amsler, Olaf Stetzer, Martin Schnaiter, Evelyn Hesse, Stefan Benz, Ottmar Moehler, and Ulrike Lohmann, "Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements," Appl. Opt. 48, 5811-5822 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. J. Schaefer, “The production of ice crystals in a cloud of supercooled water droplets,” Science 104, 457-459(1946). [CrossRef]
  2. G. Vali, “Ice nucleation--a review,” in Nucleation and Atmospheric Aerosols 1996 (Pergamon, 1996), pp. 271-279.
  3. U. Lohmann and J. Feichter, “Global indirect aerosol effects: a review,” Atmos. Chem. Phys. 5, 715-737 (2005).
  4. A. Korolev and G. A. Isaac, “Relative humidity in liquid, Mixed-phase, and ice clouds,” J. Atmos. Sci. 63, 2865-2880(2006). [CrossRef]
  5. M. Wendisch, P. Pilewskie, J. Pommier, S. Howard, P. Yang, A. J. Heymsfield, C. G. Schmitt, D. Baumgardner and B. Mayer, “Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus,” J. Geophys. Res. 110, D03202 (2005). [CrossRef]
  6. W. Cantrell and A. Heymsfield, “Production of ice in tropospheric clouds--a review,” Bull. Am. Meteorol. Soc. 86, 795-807 (2005). [CrossRef]
  7. K. G. Libbrecht, “The physics of snow crystals,” Rep. Prog. Phys. 68, 855-895 (2005). [CrossRef]
  8. P. Yang, H. Wei, H. L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512-5523 (2005). [CrossRef]
  9. H. J. Kreuzer, M. J. Jericho, I. A. Meinertzhagen, and W. B. Xu, “Digital in-line holography with photons and electrons,” J. Phys. Condens. Matter 13, 10729-10741 (2001). [CrossRef]
  10. J. D. Trolinger, “Particle field holography,” Opt. Eng. 14, 383-392 (1975).
  11. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893-3901 (2006). [CrossRef]
  12. P. R. A. Brown, “Use of holography for airborne cloud physics measurements,” J. Atmos. Ocean. Technol. 6, 293-306(1989). [CrossRef]
  13. J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt. 43, 5987-5995 (2004). [CrossRef]
  14. H. J. Vossing, S. Borrmann, and R. Jaenicke, “In-line holography of cloud volumes applied to the measurement of raindrops and snowflakes,” Atmos. Res. 49, 199-212 (1998). [CrossRef]
  15. S. M. F. Raupach, H. J. Vossing, J. Curtius, and S. Borrmann, “Digital crossed-beam holography for in situ imaging of atmospheric ice particles,” J. Opt. A Pure Appl. Opt. 8, 796-806(2006). [CrossRef]
  16. S. K. Jericho, J. Garcia-Sucerquia, W. B. Xu, M. H. Jericho, and H. J. Kreuzer, “Submersible digital in-line holographic microscope,” Rev. Sci. Instrum. 77, 043706 (2006). [CrossRef]
  17. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).
  18. C. S. Vikram and M. L. Billet, “In-line Fraunhofer holography at a few far fields,” Appl. Opt. 23, 3091-3094 (1984). [CrossRef]
  19. J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006). [CrossRef]
  20. C. S. Vikram and M. L. Billet, “Some salient features of in-line Fraunhofer holography with divergent beams,” Optik (Jena) 78, 80-83 (1988).
  21. D. M. Robinson, “A calculation of edge smear in far-field holography using a short-cut edge trace technique,” Appl. Opt. 9, 496-497 (1970). [CrossRef]
  22. S. L. Cartwright, P. Dunn, and B. J. Thompson, “Noise and resolution in far-field holography,” J. Opt. Soc. Am. 70(2), 1631(1980).
  23. B. J. Thompson, “Holographic particle sizing techniques,” J. Phys. E 7, 781-788 (1974). [CrossRef]
  24. H. Koehler, “On Abbe's theory of image formation in the microscope,” Opt. Acta 28, 1691-1701 (1981).
  25. C. Magono and C. Lee, “Meteorological classification of natural snow crystals,” J. Fac. Sci., Univ. Tokyo, Sect. 1, Ser. VII 2, 321-335 (1966).
  26. A. Korolev, G. A. Isaac, and J. Hallett, “Ice particle habits in stratiform clouds,” Q. J. R. Meteorol. Soc. 126, 2873-2902(2000). [CrossRef]
  27. O. Möhler, S. Büttner, C. Linke, M. Schnaiter, H. Saathoff, O. Stetzer, R. Wagner, M. Krämer, A. Mangold, V. Ebert, and U. Schurath, “Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles,” J. Geophys. Res. 110, D11210 (2005). [CrossRef]
  28. S. Benz, K. Megahed, O. Möhler, H. Saathoff, R. Wagner, and U. Schurath, “T-dependent rate measurements of homogeneous ice nucleation in cloud droplets using a large atmospheric simulation chamber,” J. Photochem. Photobiol. A 176, 208-217 (2005). [CrossRef]
  29. M. Schnaiter, S. Benz, V. Ebert, T. Leisner, O. Möhler, R. W. Saunders, and R. Wagner, “Influence of particle size and shape on the backscattering linear depolarization ratio of small ice crystals,” J. Atmos. Sci. (2009). To be submitted.
  30. H. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  31. J. Hallett, “Faceted snow crystals,” J. Opt. Soc. Am. A 4, 581-588 (1987). [CrossRef]
  32. H. R. Puppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer, 1997).
  33. A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813-2825 (1996). [CrossRef]
  34. K. Sassen, Light Scattering by Nonspherical Particles (Academic, 1999).
  35. K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part II: Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58, 2103-2112 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited