OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 30 — Oct. 20, 2009
  • pp: 5863–5870

Anomalous reflection in a metallic plate with subwavelength grooves of circular cross section

Claudio I. Valencia and Diana C. Skigin  »View Author Affiliations

Applied Optics, Vol. 48, Issue 30, pp. 5863-5870 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (927 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Resonant features in the response of finite arrays of rectangular grooves ruled on a metallic plate have been reported in connection with the excitation of phase resonances. These anomalies are generated by a particular arrangement of the magnetic field phases inside the subwavelength grooves when the structure is illuminated by a p-polarized electromagnetic wave. We show that this kind of resonance is also present for grooves of circular cross section and appear as sharp peaks in the specular response, the number of which increases with the number of grooves in the structure. A significant intensification of the field within the grooves is also found for these particular phase configurations. The dependence of the response on the geometrical parameters of the structure is analyzed in detail, in order to consider these structures for potential applications such as frequency selectors and polarizers.

© 2009 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces

ToC Category:
Optics at Surfaces

Original Manuscript: July 15, 2009
Manuscript Accepted: September 2, 2009
Published: October 19, 2009

Claudio I. Valencia and Diana C. Skigin, "Anomalous reflection in a metallic plate with subwavelength grooves of circular cross section," Appl. Opt. 48, 5863-5870 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Goulielmakis, G. Nersisyan, N. Papadogiannis, D. Charalambidis, G. Tsakiris, and K. Witte, “A dispersionless Michelson interferometer for the characterization of attosecond pulses,” Appl. Phys. B 74, 197-206 (2002).
  2. J. J. Wang, F. Liu, X. Deng, X. Liu, L. Chen, P. Sciortino, and R. Varghese, “Monolithically integrated circular polarizers with two-layer nano-gratings fabricated by imprint lithography,” J. Vac. Sci. Technol. B 23, 3164-3167 (2005). [CrossRef]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
  4. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779-6782(1998).
  5. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  6. F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructures metals,” Phys. Rev. B 66, 155412 (2002).
  7. D. C. Skigin, V. V. Veremey, and R. Mittra, “Superdirective radiation from finite gratings of rectangular grooves,” IEEE Trans. Antennas Propag. 47, 376-383 (1999). [CrossRef]
  8. A. N. Fantino, S. I. Grosz, and D. C. Skigin, “Resonant effect in periodic gratings comprising a finite number of grooves in each period,” Phys. Rev. E 64, 016605 (2001). [CrossRef]
  9. S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002). [CrossRef]
  10. D. C. Skigin, A. N. Fantino, and S. I. Grosz, “Phase resonances in compound metallic gratings,” J. Opt. A Pure Appl. Opt. 5, S129-S135 (2003). [CrossRef]
  11. J. Le Perchec, P. Quemerais, A. Barbara, and T. Lopez-Rios, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006). [CrossRef]
  12. D. C. Skigin and R. A. Depine, “Transmission resonances on metallic compound gratings with subwavelength slits,” Phys. Rev. Lett. 95, 217402 (2005). [CrossRef]
  13. D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270-275 (2006). [CrossRef]
  14. D. C. Skigin and R. A. Depine, “Narrow gaps for transmission through metallic structured gratings with subwavelength slits,” Phys. Rev. E 74, 046606 (2006). [CrossRef]
  15. A. P. HibbinsI. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006). [CrossRef]
  16. D. C. Skigin, H. Loui, Z. Popovic, and E. Kuester, “Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits,” Phys. Rev. E 76, 016604(2007). [CrossRef]
  17. Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, “Microwave transmission modes in compound metallic gratings,” Phys. Rev. B 76, 085413 (2007). [CrossRef]
  18. A. Barbara, J. Le Perchec, S. Collin, C. Sauvan, J.-L. Pelouard, T. López-Ríos, and P. Quémerais, “Generation and control of hot spots on commensurate metallic gratings,” Opt. Express 16, 19127-19135 (2008). [CrossRef]
  19. M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94, 091107 (2009). [CrossRef]
  20. V. V. Veremey and R. Mittra, “Scattering from structures formed by resonant elements,” IEEE Trans. Antennas Propag. 46, 494-501 (1998). [CrossRef]
  21. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255-307 (1990). [CrossRef]
  22. C. I. Valencia and R. A. Depine, “Resonant scattering of light by an open cylindrical cavity ruled on a highly conducting flat surfaces,” Opt. Commun. 159, 254-265 (1999). [CrossRef]
  23. C. I. Valencia, E. R. Méndez, and B. S. Mendoza, “Second harmonic generation in the scattering of light by two dimensional particles,” J. Opt. Soc. Am. B 20, 2150-2161 (2003). [CrossRef]
  24. R. Goloskie, T. Thio, and L. R. Ram-Mohan, “Boundary elements and surface plasmons,” Comput. Phys. 10, 477-495(1996). [CrossRef]
  25. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1970), p. 364.
  26. D. Colak, A. I. Nosich, and A. Altintas, “Radar cross-section study of cylindrical cavity-backed apertures with outer or inner material coating: the case of H-polarization,” IEEE Trans. Antennas Propag. 43, 440-447 (1995). [CrossRef]
  27. R. W. Ziolkowski and J. B. Grant, “Scattering from cavity-backed apertures: the generalized dual series solution of the concentrically loaded E-pol slit cylinder problem,” IEEE Trans. Antennas Propag. 35, 504-528 (1987). [CrossRef]
  28. P. M. Goggans and T. H. Shumpert, “Backscatter RCS for TE and TM excitations of dielectric-filled cavity-backed apertures in two-dimensional bodies,” IEEE Trans. Antennas Propag. 39, 1224-1227 (1991). [CrossRef]
  29. D. C. Skigin and R. A. Depine, “Resonant enhancement of the field within a single ground-plane cavity: comparison of different rectangular shapes,” Phys. Rev. E 59, 3661-3668 (1999). [CrossRef]
  30. D. C. Skigin and R. A. Depine, “Resonant modes of a bottle-shaped cavity and their effects in the response of finite and infinite gratings,” Phys. Rev. E 61, 4479-4490 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited