OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: 5906–5916

Optical diagnostics of anisotropic nanoscale films on transparent isotropic materials by integrating reflectivity and ellipsometry

Peep Adamson  »View Author Affiliations


Applied Optics, Vol. 48, Issue 31, pp. 5906-5916 (2009)
http://dx.doi.org/10.1364/AO.48.005906


View Full Text Article

Enhanced HTML    Acrobat PDF (757 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The reflection of s- and p-polarized electromagnetic plane waves from an anisotropic ultrathin dielectric film on transparent isotropic substrate is investigated in the long-wavelength limit. The analytical approximate formulas are obtained for the reflection coefficients and ellipsometric angles that agree with the exact computer solution of the reflection problem for anisotropic systems. The possibilities of using the obtained expressions for resolving the inverse problem for ultrathin anisotropic dielectric films upon isotropic dielectric substrates are discussed. It is shown that a promising technique for determining the optical constants of anisotropic dielectric films on transparent substrates is the integration of ellipsometry and differential reflectivity.

© 2009 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(240.0310) Optics at surfaces : Thin films
(260.2110) Physical optics : Electromagnetic optics
(260.2130) Physical optics : Ellipsometry and polarimetry
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Physical Optics

History
Original Manuscript: June 26, 2009
Revised Manuscript: September 19, 2009
Manuscript Accepted: October 6, 2009
Published: October 21, 2009

Citation
Peep Adamson, "Optical diagnostics of anisotropic nanoscale films on transparent isotropic materials by integrating reflectivity and ellipsometry," Appl. Opt. 48, 5906-5916 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-31-5906


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Rep. Prog. Phys. 69, 327-396 (2006). [CrossRef]
  2. G.-M. Rignanese, X. Gonze, G. Jun, K. Cho, and A. Pasquarello, “First-principles investigation of high-k dielectrics: comparison between the silicates and oxides of hafnium and zirconium,” Phys. Rev. B 69, 184301 (2004). [CrossRef]
  3. M. Yamamoto and T. Namioka, “In situ ellipsometric study of optical properties of ultrathin films,” Appl. Opt. 31, 1612-1621 (1992). [CrossRef] [PubMed]
  4. J. Lekner, Theory of Reflection of Electromagnetic and Particle Waves (Martinus Nijhoff, 1987).
  5. I. J. Hodgkinson, F. Horowitz, H. A. Macleod, M. Sikkens, and J. J. Wharton, “Measurement of the principal refractive indices of thin films deposited at oblique incidence,” J. Opt. Soc. Am. A 2, 1693-1697 (1985). [CrossRef]
  6. F. Flory, D. Endelema, E. Pelletier, and I. Hodgkinson, “Anisotropy in thin films: modeling and measurement of guided and nonguided optical properties: application to TiO2 films,” Appl. Opt. 32, 5649-5659 (1993). [CrossRef] [PubMed]
  7. H. Wang, “Propagation and reflection of plane waves in a medium with the 3-dimensional columnar structure induced anisotropy,” Optik (Jena) 106, 140-146 (1997).
  8. I. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653-2659 (1998). [CrossRef]
  9. G. I. Surdutovich, R. Z. Vitlina, A. V. Ghiner, S. F. Durrant, and V. Baranauskas, “Three polarization reflectometry methods for determination of optical anisotropy,” Appl. Opt. 37, 65-78(1998). [CrossRef]
  10. M. Schubert, T. Hofmann, B. Rheinländer, I. Pietzonka, T. Sass, V. Gottschalch, and J. A. Woollam, “Near-band-gap CuPt-order-induced birefringence in Al0.48Ga0.52InP2,” Phys. Rev. B 60, 16618-16634 (1999). [CrossRef]
  11. Y. J. Jen, C. H. Hsieh, and T. S. Lo, “Optical constant determination of an anisotropic thin film via surface plasmon resonance: analyzed by sensitivity calculation,” Opt. Commun. 244, 269-277 (2005). [CrossRef]
  12. Y. J. Jen, C. Y. Peng, and H. H. Chang, “Optical constant determination of an anisotropic thin film via polarization conversion,” Opt. Express 15, 4445-4451 (2007). [CrossRef] [PubMed]
  13. A. N. Saxena, “Changes in the phase and amplitude of polarized light reflected from a film-covered surface and their relations with the film thickness,” J. Opt. Soc. Am. 55, 1061-1067(1965). [CrossRef]
  14. J. P. E. McIntyre and D. E. Aspnes, “Differential reflection spectroscopy of very thin surface films,” Surf. Sci. 24, 417-434(1971). [CrossRef]
  15. P. Adamson, “Reflection of light in a long-wavelength approximation from an N-layer system of inhomogeneous dielectric films and optical diagnostics of ultrathin layers. I. Absorbing substrate,” J. Opt. Soc. Am. B 20, 752-759 (2003). [CrossRef]
  16. P. Adamson, “Reflection of light in a long-wavelength approximation from an N-layer system of inhomogeneous dielectric films and optical diagnostics of ultrathin layers. II. Transparent substrate,” J. Opt. Soc. Am. B 21, 645-654 (2004). [CrossRef]
  17. M. K. Kelly, S. Zollner, and M. Cardona, “Modeling the optical response of surfaces measured by spectroscopic ellipsometry: application to Si and Ge,” Surf. Sci. 285, 282-294(1993). [CrossRef]
  18. K. Hingerl, D. E. Aspnes, and I. Kamiya, “Comparison of reflectance difference spectroscopy and surface photoabsorption used for the investigation of anisotropic surfaces,” Surf. Sci. 287/288, 686-692 (1993). [CrossRef]
  19. Š. Višňovský, M. Nývlt, V. Prosser, R. Lopušník, R. Urban, J. Ferré, G. Pénissard, D. Renard, and R. Krishnan “Polar magneto-optics in simple ultrathin-magnetic-film structures,” Phys. Rev. B 52, 1090-1106 (1995). [CrossRef]
  20. H. Goldstein, Classical Mechanics (Addison-Wesley, 1965).
  21. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62, 502-510 (1972). [CrossRef]
  22. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  23. R. M. A. Azzam and N. M. Bashara, “Generalized ellipsometry for surfaces with directional preference: application to diffraction gratings,” J. Opt. Soc. Am. 62, 1521-1523 (1972). [CrossRef]
  24. M. Schubert, B. Rheinländer, J. A. Woollam, B. Johs, and C. M. Herzinger, “Extension of rotating-analyzer ellipsometry to generalized ellipsometry: determination of the dielectric function tensor from uniaxial TiO2,” J. Opt. Soc. Am. A 13, 875-883 (1996). [CrossRef]
  25. W. Xu, L. T. Wood, and T. D. Golding, “Optical degeneracies in anisotropic layered media: treatment of singularities in a 4×4 matrix formalism,” Phys. Rev. B 61, 1740-1743 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited