OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: 6015–6025

General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface

Wenbo Sun, Huiying Pan, and Gorden Videen  »View Author Affiliations


Applied Optics, Vol. 48, Issue 31, pp. 6015-6025 (2009)
http://dx.doi.org/10.1364/AO.48.006015


View Full Text Article

Enhanced HTML    Acrobat PDF (720 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, we develop a numerical algorithm to calculate the interaction of an arbitrary electro magnetic beam with an arbitrary dielectric surface as one of the tools necessary to design and build a detector network based on surface-enhanced Raman scattering (SERS). By using the scattered-field finite-difference time-domain (FDTD) method with incident source terms in the FDTD equations, this development enables an arbitrary incident beam to be implemented onto an arbitrary dielectric surface or particle. Most importantly, in this study a scattered-field uniaxial perfectly matched layer (SF-UPML) absorbing boundary condition (ABC) is developed to truncate the computational domain of the scattered-field FDTD grid. The novel SF-UPML for the scattered-field FDTD algorithm should have a numerical accuracy similar to that of the conventional uniaxial perfectly matched layer for the source-free FDTD equations. Using the new ABC, the scattered-field FDTD method can accurately calculate electromagnetic wave scattering by an arbitrary dielectric surface or particles illuminated by an arbitrary incident beam.

© 2009 Optical Society of America

OCIS Codes
(280.1100) Remote sensing and sensors : Aerosol detection
(290.5850) Scattering : Scattering, particles
(290.5880) Scattering : Scattering, rough surfaces
(290.5890) Scattering : Scattering, stimulated
(240.3695) Optics at surfaces : Linear and nonlinear light scattering from surfaces

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 21, 2009
Manuscript Accepted: October 9, 2009
Published: October 27, 2009

Citation
Wenbo Sun, Huiying Pan, and Gorden Videen, "General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface," Appl. Opt. 48, 6015-6025 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-31-6015


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. L. Schuler, J.-S. Lee, D. Kasilingam, and G. Nesti, “Surface roughness and slope measurements using polarimetric SAR data,” IEEE Trans. Geosci. Remote Sens. 40, 687-698 (2002). [CrossRef]
  2. S. Gomez, K. Hale, J. Burrows, and B. Griffiths, “Measurements of surface defects on optical components,” Meas. Sci. Technol. 9, 607-616 (1998). [CrossRef]
  3. H. Lin and J. Zhu, “Characterization of nanocrystalline silicon films,” Proc. SPIE 4700, 354-356 (2002). [CrossRef]
  4. A. Angell and C. Rappaport, “Computational modeling analysis of radar scattering by clothing covered arrays of metallic body-worn explosive devices,”Prog. Electromagn. Res. pier-76, 285-298 (2007). [CrossRef]
  5. Lord Rayleigh, The Theory of Sound (MacMillan, 1896).
  6. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves),” J. Opt. Soc. Am. 31, 213-222 (1941). [CrossRef]
  7. S. O. Rice, “Reflection of electromagnetic waves from slightly rough surfaces,” Commun. Pure Appl. Math. 4, 351-378(1951). [CrossRef]
  8. S. O. Rice, Reflection of EM from Slightly Rough Surfaces (Interscience, 1963).
  9. C. Eckart, “The scattering of sound from the sea surface,” J. Acoust. Soc. Am. 25, 566-570 (1953). [CrossRef]
  10. H. Davies, “The reflection of electromagnetical waves from rough surfaces,” Proc. IEEE 101, 209-214 (1954).
  11. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves From Rough Surfaces (Pergamon, 1963).
  12. A. K. Fung and G. W. Pan, “An integral equation method for rough surface scattering,” in Proceedings of the International Symposium on Multiple Scattering of Waves in Random Media and Random Surfaces, (1986), pp. 701-714. [PubMed]
  13. A. K. Fung, Z. Li, and K. S. Chen, “Backscattering from a randomly rough dielectric surface,” IEEE Trans. Geosci. Remote Sens. 30, 356-369 (1992). [CrossRef]
  14. A. K. Fung, Microwave Scattering and Emission Models and their Applications (Artech House, 1994).
  15. L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations (Wiley, 2001). [CrossRef]
  16. M. Saillard and A. Sentenac, “Rigorous solutions for electromagnetic scattering from rough surfaces,” Waves Random Media 11, R103-R137 (2001). [CrossRef]
  17. C. Y. Hsieh, A. K. Fung, G. Nesti, A. J. Siber, and P. Coppo, “A further study of the IEM surface scattering model,” IEEE Trans. Geosci. Remote Sens. 35, 901-909 (1997). [CrossRef]
  18. A. K. Fung, Z. Li, and K. S. Chen, “An improved IEM model for bistatic scattering from rough surfaces,” J. Electromagn. Waves Appl. 16, 689-702 (2002). [CrossRef]
  19. K. S. Chen, T. D. Wu, and A. K. Fung, “A study of backscattering from multi-scale rough surface,” J. Electromagn. Waves Appl. 12, 961-979 (1998). [CrossRef]
  20. F. Mattia, “Backscattering properties of multi-scale rough surfaces,” J. Electromagn. Waves Appl. 13, 493-527 (1999). [CrossRef]
  21. P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers (Cambridge U. Press, 1990).
  22. J. M. Jin, The Finite Element Method in Electromagnetics (Wiley, 1993).
  23. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973). [CrossRef]
  24. S. B. Singham and G. C. Salzman, “Evaluation of the scattering matrix of an arbitrary particle using the coupled dipole approximation,” J. Chem. Phys. 84, 2658-2667 (1986). [CrossRef]
  25. B. T. Draine and P. J. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491-1499 (1994). [CrossRef]
  26. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propagat. 14, 302-307 (1966). [CrossRef]
  27. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, 1993).
  28. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  29. P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072-2085 (1996). [CrossRef]
  30. W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141-3151 (1999). [CrossRef]
  31. W. Sun, N. G. Loeb, and Q. Fu, “Finite-difference time domain solution of light scattering and absorption by particles in an absorbing medium,” Appl. Opt. 41, 5728-5743 (2002). [CrossRef] [PubMed]
  32. P. Yang, G. W. Kattawar, K. N. Liou, and J. Q. Lu, “Comparison of Cartesian grid configurations for applying the finite-difference time domain method to electromagnetic scattering by dielectric particles,” Appl. Opt. 43, 4611-4624(2004). [CrossRef] [PubMed]
  33. W. Sun, G. Videen, B. Lin, and Y. Hu, “Modeling light scattered from and transmitted through dielectric periodic structures on a substrate,” Appl. Opt. 46, 1150-1156 (2007). [CrossRef] [PubMed]
  34. D. Wu and Y. Zhou, “Forward scattering light of droplets containing different size inclusions,” Appl. Opt. 48, 2957-2965(2009). [CrossRef] [PubMed]
  35. G. Videen, “Light scattering from a sphere on or near a surface,” J. Opt. Soc. Am. A 8, 483-489 (1991). [CrossRef]
  36. Errata, J. Opt. Soc. Am. A 9, 844-845 (1992). [CrossRef]
  37. E. Fucile, P. Denti, F. Borghese, R. Saija, and O. I. Sindoni, “Optical properties of a sphere in the vicinity of a plane surface,” J. Opt. Soc. Am. A 14, 1505-1514 (1997). [CrossRef]
  38. B. R. Johnson, “Calculation of light scattering from a spherical particle on a surface by the multipole expansion method,” J. Opt. Soc. Am. A 13, 326-337 (1996). [CrossRef]
  39. G. Videen, “Light scattering from a sphere behind a surface,” J. Opt. Soc. Am. A 10, 110-117 (1993). [CrossRef]
  40. G. Videen, M. G. Turner, V. J. Iafelice, W. S. Bickel, and W. L. Wolfe, “Scattering from a small sphere near a surface,” J. Opt. Soc. Am. A 10, 118-126 (1993). [CrossRef]
  41. G. Videen, M. M. Aslan, and M. P. Mengüç, “Characterization of metallic nano-particles via surface wave scattering. A. Theoretical framework and formulation,” J. Quant. Spectrosc. Radiat. Transfer 93, 195-206 (2005). [CrossRef]
  42. R. Borghi, F. Gori, M. Santarsiero, F. Frezza, and G. Schettini, “Plane-wave scattering by a perfectly conducting circular cylinder near a plane surface: cylindrical-wave approach,” J. Opt. Soc. Am. A 13, 483-493 (1996). [CrossRef]
  43. G. Videen and D. Ngo, “Light scattering from a cylinder near a plane interface: theory and comparison with experimental data,” J. Opt. Soc. Am. A 14, 70-78 (1997). [CrossRef]
  44. G. Videen, “Light scattering from a particle on or near a perfectly conducting surface,” Opt. Commun. 115, 1-7 (1995). [CrossRef]
  45. G. Videen, “Light scattering from an irregular particle behind a plane interface,” Opt. Commun. 128, 81-90 (1996). [CrossRef]
  46. P. G. Venkata, M. M. Aslan, M. P. Menguc, and G. Videen, “Surface plasmon scattering by gold nanoparticles and two-dimensional agglomerates,” J. Heat Transfer 129, 60-70(2007). [CrossRef]
  47. T. Wriedt and A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun. 152, 376-384 (1998). [CrossRef]
  48. P. Denti, F. Borghese, R. Saija, E. Fucile, and O. I. Sindoni, “Optical properties of aggregated spheres in the vicinity of a plane surface,” J. Opt. Soc. Am. A 16, 167-175 (1999). [CrossRef]
  49. D. W. Mackowski, “Exact solution for the scattering and absorption properties of sphere clusters on a plane surface,” J. Quant. Spectrosc. Radiat. Transfer 109, 770-788 (2008). [CrossRef]
  50. R. Schmehl, B. M. Nebeker, and E. D. Hirleman, “Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique,” J. Opt. Soc. Am. A 14, 3026-3036 (1997). [CrossRef]
  51. P. Albella, F. Moreno, J. M. Saiz, and F. González, “Surface inspection by monitoring spectral shifts of localized plasmon resonances,” Opt. Express 16, 12872-12879 (2008). [CrossRef] [PubMed]
  52. M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15, 17902-17911 (2007). [CrossRef] [PubMed]
  53. A. Doicu, Y. Eremin, and T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic, 2000).
  54. N. J. Cassidy, “A review of practical numerical modelling methods for the advanced interpretation of ground-penetrating radar in near-surface environments,” Near Surface Geophys. 5, 5-21 (2007).
  55. R. Holland, “Threde: a free-field EMP coupling and scattering code,” IEEE Trans. Nucl. Sci. 24, 2416-2421 (1977). [CrossRef]
  56. R. Holland, R. L. Simpson, and K. S. Kunz, “Finite-difference analysis of EMP coupling to lossy dielectric structures,” IEEE Trans. Electromagn. Compat. emc-22, 203-209 (1980). [CrossRef]
  57. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, 2005).
  58. W. Sun and Q. Fu, “Finite-difference time domain solution of light scattering by dielectric particles with large complex refractive indices,” Appl. Opt. 39, 5569-5578 (2000). [CrossRef]
  59. W. Sun, T. Nousiainen, K. Muinonen, Q. Fu, N. G. Loeb, and G. Videen, “Light scattering by Gaussian particles: A solution with finite-difference time domain technique,” J. Quant. Spectrosc. Radiat. Transfer 79-80, 1083-1090 (2003). [CrossRef]
  60. W. Sun, N. G. Loeb, G. Videen, and Q. Fu, “Examination of surface roughness on light scattering by long ice columns by use of a two-dimensional finite-difference time-domain algorithm,” Appl. Opt. 43, 1957-1964 (2004). [CrossRef] [PubMed]
  61. W. Sun, B. Lin, Y. Hu, Z. Wang, Y. Fu, Q. Feng, and P. Yang, “Side-face effect of a dielectric strip on its optical properties,” IEEE Trans. Geosci. Remote Sens. 46, 2337-2344 (2008). [CrossRef]
  62. B. Saleh and M. Teich, Fundamentals of Photonics (Wiley, 1991). [CrossRef]
  63. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651-654 (1987). [CrossRef]
  64. Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propagat. 43, 1460-1463 (1995). [CrossRef]
  65. S. D. Gedney, “An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices,” IEEE Trans. Antennas Propagat. 44, 1630-1639 (1996). [CrossRef]
  66. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200(1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited