OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: 6035–6043

Effects of including a diffraction term into Rigrod theory for a continuous-wave laser

David L. Carroll and Joseph T. Verdeyen  »View Author Affiliations


Applied Optics, Vol. 48, Issue 31, pp. 6035-6043 (2009)
http://dx.doi.org/10.1364/AO.48.006035


View Full Text Article

Enhanced HTML    Acrobat PDF (956 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multimode, low-gain continuous-wave lasers are often subject to having intracavity apertures that create diffractive losses inside the optical resonator. For very low-gain systems with short gain lengths, highly reflective mirrors are required to obtain laser oscillation. The Rigrod theory was modified to include a diffractive loss term and comparisons with experimental data show that the intracavity diffractive losses, while small in magnitude, can play a significant role for these low-gain cases with high mirror reflectivities.

© 2009 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(140.1340) Lasers and laser optics : Atomic gas lasers
(140.1550) Lasers and laser optics : Chemical lasers
(140.3430) Lasers and laser optics : Laser theory

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 22, 2009
Revised Manuscript: August 19, 2009
Manuscript Accepted: October 12, 2009
Published: October 28, 2009

Citation
David L. Carroll and Joseph T. Verdeyen, "Effects of including a diffraction term into Rigrod theory for a continuous-wave laser," Appl. Opt. 48, 6035-6043 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-31-6035


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. W. Rigrod, “Gain saturation and output power of optical masers,” J. Appl. Phys. 34, 2602-2609 (1963). [CrossRef]
  2. W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36 (8), 2487-2490 (1965). [CrossRef]
  3. W. W. Rigrod, “Homogeneously broadened CW lasers with uniform distributed loss,” IEEE J. Quantum Electron. 14, 377-381 (1978). [CrossRef]
  4. H. Mirels and S. B. Batdorf, “Centerline laser radiation intensity in an unstable cavity,” Appl. Opt. 11, 2384-2386 (1972). [CrossRef] [PubMed]
  5. G. M. Schindler, “Optimum output efficiency of homogeneously broadened lasers with constant loss,” IEEE J. Quantum Electron. 16, 546-549 (1980). [CrossRef]
  6. D. Eimerl, “Optical extraction characteristics of homogeneously broadened cw lasers with nonsaturating lasers,” J. Appl. Phys. 51, 3008-3016 (1980). [CrossRef]
  7. T. R. Ferguson, “Lasers with saturable gain and distributed loss,” Appl. Opt. 26, 2522-2527 (1987). [CrossRef] [PubMed]
  8. T. R. Ferguson and W. P. Latham, “Efficiency and equivalence of homogeneously broadened lossy lasers,” Appl. Opt. 31, 4113-4121 (1992). [CrossRef] [PubMed]
  9. D. L. Carroll and L. H. Sentman, “Maximizing output power of a low-gain laser system,” Appl. Opt. 32, 3930-3941 (1993). [CrossRef] [PubMed]
  10. D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, K. Kittell, D. S. Stafford, M. J. Kushner, and W. C. Solomon, “Continuous-wave laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” Appl. Phys. Lett. 86, 111104 (2005). [CrossRef]
  11. J. W. Zimmerman, G. F. Benavides, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Measurements of improved ElectricOIL performance, gain, and laser power,” presented at the 40th Plasmadynamics and Lasers Conference, San Antonio, Texas, 22-25 June 2009, AIAA paper 2009-4059.
  12. A. D. Palla, J. W. Zimmerman, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, T. C. Lim, and W. C. Solomon, “Oxygen discharge and post-discharge kinetics experiments and modeling for the electric oxygen-iodine laser system,” J. Phys. Chem. A 111, 6713-6721 (2007). [CrossRef] [PubMed]
  13. J. W. Zimmerman, G. F. Benavides, A. D. Palla, B. S. Woodard, D. L. Carroll, J. T. Verdeyen, and W. C. Solomon, “Gain recovery in an electric oxygen-iodine laser,” Appl. Phys. Lett. 94, 021109 (2009). [CrossRef]
  14. T. L. Rittenhouse, S. P. Phipps, and C. A. Helms, “Performance of a high-efficiency 5 cm gain length supersonic chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 35, 857-866 (1999). [CrossRef]
  15. D. L. Carroll, D. M. King, L. Fockler, D. Stromberg, W. C. Solomon, L. H. Sentman, and C. H. Fisher, “High-performance chemical oxygen-iodine laser using nitrogen diluent for commercial applications,” IEEE J. Quantum Electron. 36, 40-51(2000). [CrossRef]
  16. G. D. Hager, C. A. Helms, K. A. Truesdell, D. Plummer, J. Erkkila, and P. Crowell, “A simplified analytic model for gain saturation and power extraction in the flowing chemical oxygen-iodine laser,” IEEE J. Quantum Electron. 32, 1525-1536 (1996). [CrossRef]
  17. D. L. Carroll, J. T. Verdeyen, D. M. King, J. W. Zimmerman, J. K. Laystrom, B. S. Woodard, G. F. Benavides, N. R. Richardson, K. Kittell, and W. C. Solomon, “Studies of cw laser oscillation on the 1315 nm transition of atomic iodine pumped by O2(a1Δ) produced in an electric discharge,” IEEE J. Quantum Electron. 41, 1309-1318 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited