OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: 6050–6058

Lorentzian spatial intensity distribution in one-photon fluorescence correlation spectroscopy

Hans Blom and Gunnar Björk  »View Author Affiliations


Applied Optics, Vol. 48, Issue 31, pp. 6050-6058 (2009)
http://dx.doi.org/10.1364/AO.48.006050


View Full Text Article

Enhanced HTML    Acrobat PDF (688 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The theory of autocorrelation-function evaluation in fluorescence correlation spectroscopy is applied to a Lorentzian intensity distribution. An analytical solution to the autocorrelation function for diffusion is deduced for this spatial distribution. Experimental investigation of the distribution is performed using an enlarged detector aperture in a standard confocal setup. The data from the experiment are fitted to the derived autocorrelation function, and a reasonable estimate of the spatial distribution is provided. Estimates are also compared to values computed by molecular detection efficiency simulation. The use of Lorentzian intensity distributions complements conditions where a Gaussian intensity distribution applies, expanding the applicability range of analytical correlation functions.

© 2009 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 22, 2009
Revised Manuscript: September 25, 2009
Manuscript Accepted: October 8, 2009
Published: October 28, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Hans Blom and Gunnar Björk, "Lorentzian spatial intensity distribution in one-photon fluorescence correlation spectroscopy," Appl. Opt. 48, 6050-6058 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-31-6050


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Magde, E. L. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system--measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705-708 (1972). [CrossRef]
  2. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13, 1-27(1974). [CrossRef]
  3. S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64, 1791-1803 (1976). [CrossRef]
  4. R. Rigler and E. S. Elson, eds., Fluorescence Correlation Spectroscopy--Theory and Application (Springer-Verlag, 2001).
  5. O. Krichevsky and G. Bonnet, “Fluorescence-correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251-297 (2002). [CrossRef]
  6. D. Magde, W. W. Webb, and E. L. Elson, “Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow,” Biopolymers 17, 361-376 (1978). [CrossRef]
  7. J. Widengren and P. Schwille, “Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy,” J. Phys. Chem. A 104, 6416-6428 (2000). [CrossRef]
  8. J. Widengren, B. Terry, and R. Rigler, “Protonation kinetics of GFP and FITC investigated by FCS--aspects of the use of fluorescent indicators for measuring pH,” Chem. Phys. 249, 259-271 (1999). [CrossRef]
  9. J. Widengren, Ü. Mets, and R. Rigler, “Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study,” J. Phys. Chem. 99, 13368-13377(1995). [CrossRef]
  10. D. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, “Dynamics of fluorescence marker concentration as a probe of mobility,” Biophys. J. 16, 1315-1329 (1976). [CrossRef]
  11. A. G. Palmer III and N. L. Thompson, “Optical spatial intensity profiles for high order autocorrelation in fluorescence spectroscopy,” Appl. Opt. 28, 1214-1220 (1989). [CrossRef]
  12. H. Qian and E. L. Elson, “Analysis of confocal laser-microscope optics for 3-D fluorescence correlation spectroscopy,” Appl. Opt. 30, 1185-1195 (1991). [CrossRef]
  13. R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169-175 (1993). [CrossRef]
  14. N. L. Thompson, T. P. Burghardt, and D. Axelrod, “Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery and correlation spectroscopy,” Biophys. J. 33, 435-454 (1981). [CrossRef]
  15. T. Ruckstuhl and S. Seeger, “Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy,” Opt. Lett. 29, 569-571 (2004). [CrossRef]
  16. K. Hassler, M. Leutenegger, P. Rigler, R. Rao, R. Rigler, M. Gösch, and T. Lasser, “Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count rate per molecule,” Opt. Express 13, 7415-7423(2005). [CrossRef]
  17. J. Ries, T. Ruckstuhl, D. Verdes, and P. Schwille, “Supercritical angle fluorescence correlation spectroscopy,” Biophys. J. 94, 221-229 (2008). [CrossRef]
  18. K. M. Berland, P. T. C. So, and E. Gratton, “Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment,” Biophys. J. 68, 694-701 (1995). [CrossRef]
  19. A. Arkhipov, J. Hüve, M. Kahms, R. Peters, and K. Schulten, “Continous fluorescence microphotolysis and correlation spectroscopy using 4Pi microscopy,” Biophys. J. 93, 4006-4017(2007). [CrossRef]
  20. K. M. Hansen, S. K. Davis, and C. J. Bardeen, “Two-photon standing wave fluorescence correlation spectroscopy,” Opt. Lett. 32, 2121-2123 (2007). [CrossRef]
  21. D. Vobornik, D. S. Bank, Z. Lu, C. Fradin, R. Taylor, and L. J. Johnston, “Fluorescence correlation spectroscopy with sub-diffraction-limited resolution using near-field optical probes,” Appl. Phys. Lett. 93, 163904 (2008). [CrossRef]
  22. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682-686 (2003). [CrossRef]
  23. K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, “λ-repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides,” Biophys. J. 88, 2145-2153 (2005). [CrossRef]
  24. L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, “Fluorescence fluctuation spectroscopy in subdiffraction focal volume,” Phys. Rev. Lett. 94, 178104 (2005). [CrossRef]
  25. H. Blom, L. Kastrup, and C. Eggeling, “Fluorescence fluctuation spectroscopy in reduced detection volumes,” Curr. Pharm. Biotechnol. 7, 51-66 (2006).
  26. C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff, S. Polyakova, V. N. Belov, B. Hein, C. von Middendorff, A. Schönle, and S. W. Hell, “Direct observation of the nanoscale dynamics of membrane lipids in a living cell,” Nature 457, 1159-1163 (2009).
  27. J. Enderlein and C. Zander, “Theoretical foundations of single molecule detection in solution,” in Single Molecule Detection in Solution, Ch. Zander, J. Enderlein, and R. A. Keller, eds. (Wiley-VCH, 2002), Chap. 2, p. 21.
  28. T. Krouglova, J. Vercammen, and Y. Engelborghs, “Correct diffusion coefficient of proteins in fluorescence correlation spectroscopy. Application to tubulin oligomers induced by Mg2+ and Paclitaxel,” Biophys. J. 87, 2635-2646 (2004). [CrossRef]
  29. S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300-2317 (2002). [CrossRef]
  30. Y. Chen, J. D. Müller, P. T. C. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77, 553-567 (1999). [CrossRef]
  31. B. Huang, T. D. Perroud, and R. N. Zare, “Photon counting histogram: one-photon excitation,” Chem. Phys. Chem. 5, 1523-1531 (2004). [CrossRef]
  32. P. Kask, R. Günter, and P. Axhausen, “Statistical accuracy in fluorescence fluctuation experiments,” Eur. Biophys. J. 25, 163-169 (1997). [CrossRef]
  33. A. Yariv, ed., Optical Electronics, 4th ed. (Saunders College, 1991).
  34. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Table (Dover, 1972).
  35. C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Diffusion coefficient measurement in microfluidic devices,” Talanta 56, 365-373 (2002). [CrossRef]
  36. J. B. Pawley, ed., Handbook of Biological Confocal Microscopy, 2nd ed. (Plenum, 1995).
  37. J. Enderlein, I. Gregor, D. Patra, and J. Fitter, “Art and artefacts of fluorescence correlation spectroscopy,” Curr. Pharm. Biotechnol. 5, 155-161 (2004).
  38. J. Enderlein, I. Gregor, D. Patra, T. Dertinger, and U. B. Kaupp, “Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration,” Chem. Phys. Chem. 6, 2324-2336 (2005). [CrossRef]
  39. M. Marrocco, “Fluorescence correlation spectroscopy: incorporation of probe volume effects into the three-dimensional Gaussian approximation,” Appl. Opt. 43, 5251-5262 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited