OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: 6059–6073

Light scattering by coccoliths detached from Emiliania huxleyi

Howard R. Gordon, Timothy J. Smyth, William M. Balch, G. Chris Boynton, and Glen A. Tarran  »View Author Affiliations


Applied Optics, Vol. 48, Issue 31, pp. 6059-6073 (2009)
http://dx.doi.org/10.1364/AO.48.006059


View Full Text Article

Enhanced HTML    Acrobat PDF (1343 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We used in situ radiance/irradiance profiles to retrieve profiles of the spectral backscattering coefficient for all particles in an E. huxleyi coccolithophore bloom off the coast of Plymouth, UK. At high detached coccolith concentrations the spectra of backscattering all showed a minimum near 550 to 600 nm . Using flow cytometry estimates of the detached coccolith concentration, and assuming all of the backscattering (over and above the backscattering by the water itself) was due to detached coccoliths, we determined the upper limit of the backscattering cross section ( σ b ) of individual coccoliths to be 0.123 ± 0.039 μm 2 / coccolith at 500 nm . Physical models of detached coccoliths were then developed and the discrete dipole approximation was used to compute their average backscattering cross section in random orientation. The result was 0.092 μm 2 at 500 nm , with the computed σ b displaying a spectral shape similar to the measurements, but with less apparent increase in backscattering toward the red. When σ b is computed on a per mole of calcite, rather than a per coccolith basis, it agreed reasonably well with that determined for acid-labile backscattering at 632 nm averaged over several species of cultured calcifying algae. Intact coccolithophore cells were taken into account by arguing that coccoliths attached to coccolithophore cells (forming a “coccosphere”) backscatter in a manner similar to free coccoliths in random orientation. Estimating the number of coccoliths per coccosphere and using the observed number of coccolithophore cells resulted is an apparent backscattering cross section at 500 nm of 0.114 ± 0.013 μm 2 / coccolith , in satisfactory agreement with the measured backscattering.

© 2009 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.5850) Scattering : Scattering, particles
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Scattering

History
Original Manuscript: June 30, 2009
Revised Manuscript: October 7, 2009
Manuscript Accepted: October 9, 2009
Published: October 28, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Howard R. Gordon, Timothy J. Smyth, William M. Balch, G. Chris Boynton, and Glen A. Tarran, "Light scattering by coccoliths detached from Emiliania huxleyi," Appl. Opt. 48, 6059-6073 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-31-6059


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. G. Ackleson, “Optical determinations of suspended sediment dynamics in western Long Island Sound and the Connecticut River plume,” J. Geophys. Res. 111, C07009 (2006). [CrossRef]
  2. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters),” J. Geophys. Res. 93C, 10,749-10,768 (1988). [CrossRef]
  3. A. Bricaud, A. Morel, and L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816-832(1983).
  4. H. R. Gordon and A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).
  5. D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343-383 (1991). [CrossRef]
  6. N. Hoepffner and S. Sathyendranath, “Determination of major groups of phytoplankton pigments from absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22789-22803(1993). [CrossRef]
  7. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, “The role of seawater constituents in light backscattering in the ocean,” Prog. Oceanogr. 61, 27-56 (2004). [CrossRef]
  8. W. R. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles--from theory to observations,” in Oceanography and Marine Biology: An Annual Review, R. N. Gibson, R. J. M. Atkinson, and J. D. M.Gordon, eds. (CRC, 2007), Vol. 45, pp. 1-38.
  9. W. M. Balch, H. R. Gordon, B. C. Bowler, D. T. Drapeau, and E. S. Booth, “Calcium carbonate measurements in the surface global ocean based on moderate-resolution imaging spectroradiometer data,” J. Geophys. Res. 110, C07001 (2005). [CrossRef]
  10. Light Scattering by Nonspherical Particles, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000).
  11. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848-872 (1988). [CrossRef]
  12. H. R. Gordon and T. Du, “Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi,” Limnol. Oceanogr. 46, 1438-1454 (2001).
  13. T. J. Smyth, G. F. Moore, S. B. Groom, P. E. Land, and T. Tyrrell, “Optical modeling and measurements of a coccolithophore bloom,” Appl. Opt. 41, 7679-7688 (2002). [CrossRef]
  14. S. B. Hooker, W. E. Esaias, G. C. Feldman, W. W. Gregg, and C. R. McClain, “An overview of SeaWiFS and ocean color,” of SeaWiFS Tech. Rep. Series, Tech. Memo. 104566, Vol. 1, S.B.Hooker and E.R.Firestone, eds., NASA, Greenbelt, MD, 1992.
  15. H. R. Gordon, G. C. Boynton, W. M. Balch, S. B. Groom, D. S. Harbour, and T. J. Smyth, “Retrieval of coccolithophore calcite concentration from SeaWiFS imagery,” Geophys. Res. Lett. 28, 1587-1590 (2001). [CrossRef]
  16. J. L. Mueller and R. W. Austin, “Ocean optics protocols for SeaWiFS validation, rev. 1,” of SeaWiFS Tech. Rep. Series, Tech. Memo. 104566, Vol. 25, S.B.Hooker and E.Firestone, eds., Nasa, Greebelt, MD, 1995.
  17. H. R. Gordon, and G. C. Boynton, “A radiance--irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: stratified water bodies,” Appl. Opt. 37, 3886-3896 (1998). [CrossRef]
  18. H. R. Gordon, “The sensitivity of radiative transfer to small-angle scattering in the ocean: a quantitative assessment,” Appl. Opt. 32, 7505-7511 (1993). [CrossRef]
  19. T. J. Petzold, “Volume scattering functions for selected natural waters,” SIO Ref. 72-78 (Scripps Institution of Oceanography, 1972).
  20. C. D. Mobley, Light and Water; Radiative Transfer in Natural Waters (Academic, 1994).
  21. J. R. V. Zaneveld, A. Barnard, and E. Boss, “Theoretical derivation of the depth average of remotely sensed optical parameters,” Opt. Express 13, 9052-9061 (2005). [CrossRef]
  22. J. Piskozub, T. Neumann, and L. Wozniak, “Ocean color remote sensing: choosing the correct depth weighting function,” Opt. Express 16, 14683-14688 (2008). [CrossRef]
  23. H. R. Gordon and D. K. Clark, “Remote sensing optical properties of a stratified ocean: an improved interpretation,” Appl. Opt. 19, 3428-3430 (1980). [CrossRef]
  24. H. R. Gordon, M. R. Lewis, S. D. McLean, M. S. Twardowski, S. A. Freeman, K. J. Voss, and G. C. Boynton, “Spectra of particulate backscattering in natural waters,” Opt. Express 17, 16192-16208 (2009). [CrossRef]
  25. W. M. Balch, A. J. Plueddeman, B. C. Bowler, and D. T. Drapeau, “Chalk-Ex--the fate of CaCO3 particles in the mixed layer: evolution of patch optical properties,” J. Geophys. Res. 114, C07020 (2009). [CrossRef]
  26. G. C. Boynton and H. R. Gordon, “An irradiance inversion algorithm for absorption and backscattering coefficients: improvement for very clear waters,” Appl. Opt. 41, 2224-2227(2002). [CrossRef]
  27. R. M. Chomko, H. R. Gordon, S. Maritorena, and D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Remote Sens. Environ. 84, 208-220 (2003). [CrossRef]
  28. C. P. Kuchinke, H. R. Gordon, and B. A. Franz, “Spectral optimization for constituent retrieval in Case 2 waters. I: implementation and performance,” Remote Sens. Environ. 113, 571-587 (2009). [CrossRef]
  29. C. P. Kuchinke, H. R. Gordon, L. W. Harding, Jr., and K. J. Voss, “Spectral optimization for constituent retrieval in Case 2 waters II: validation study in the Chesapeake Bay,” Remote Sens. Environ. 113, 610-621 (2009). [CrossRef]
  30. W. M. Balch, P. Holligan, S. Ackleson, and K. Voss, “Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine,” Limnol. Oceanogr. 36, 629-643 (1991).
  31. W. M. Balch, K. Kilpatrick, P. M. Holligan, D. Harbour, and E. Fernandez, “The 1991 coccolithophore bloom in the central north Atlantic II: relating optics to coccolith concentration,” Limnol. Oceanogr. 41, 1684-1696 (1996).
  32. K. J. Voss, W. M. Balch, and K. A. Kilpatrick, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43, 870-876(1998).
  33. H. R. Gordon, “Backscattering of light from disk-like particles: is fine-scale structure or gross morphology more important?,” Appl. Opt. 45, 7166-7173 (2006). [CrossRef]
  34. H. R. Gordon, “Backscattering of light from disk-like particles with aperiodic angular fine structure,” Opt. Express 15, 16424-16430 (2007). [CrossRef]
  35. J. R. Young and P. Ziveri, “Calculation of coccolith volume and its use in calibration of carbonate flux estimates,” Deep Sea Res. II 47, 1679-1700 (2000). [CrossRef]
  36. J. R. Young, J. M. Didymus, P. R. Brown, B. Prins, and S. Mann, “Crystal assembly and phylogenetic evolution in heterococcoliths,” Nature 356, 516-518 (1992). [CrossRef]
  37. H. R. Gordon, “Rayleigh-Gans scattering approximation: surprisingly useful for understanding backscattering from disk-like particles,” Opt. Express 15, 5572-5588(2007). [CrossRef]
  38. B. T. Draine, and P. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491-1499(1994). [CrossRef]
  39. W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contributions of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541-1558 (1999). [CrossRef]
  40. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  41. W. M. Balch, J. J. Fritz, and E. Fernandez, “Decoupling of calcification and photosynthesis in the coccolithophere Emiliania huxleyi under steady-state light limited growth,” Mar. Ecol. Prog. Ser. 142, 87-97 (1996). [CrossRef]
  42. Y. S. Nakamura, S.-Y.Suzkui, and J. Hiromi, “Development and collapse for a Gymnodinium mikimotoi red tide in the Seto Inland Sea,” Aquat. Microb. Ecol. 10, 131-137(1996). [CrossRef]
  43. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  44. L. Karp-Boss and P. A. Jumurs, “Motion of diatom chains in steady shear flow,” Limnol. Oceanogr. 43, 1767-1773(1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited