OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: G101–G105

Transformation optical design of a bending waveguide by use of isotropic materials

Xiaojiong Wu, Zhifang Lin, Huanyang Chen, and C. T. Chan  »View Author Affiliations


Applied Optics, Vol. 48, Issue 31, pp. G101-G105 (2009)
http://dx.doi.org/10.1364/AO.48.00G101


View Full Text Article

Enhanced HTML    Acrobat PDF (511 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the effective medium theory, we designed a simplified transformation media bending waveguide by use of only three kinds of isotropic material in an alternating layered structure. The design can be used to guide incoming waves smoothly along the bending part of a waveguide with slight distortions. Numerical simulations are performed to illustrate its functionality.

© 2009 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(230.0230) Optical devices : Optical devices
(260.2110) Physical optics : Electromagnetic optics
(260.2710) Physical optics : Inhomogeneous optical media

History
Original Manuscript: July 15, 2009
Manuscript Accepted: September 5, 2009
Published: October 8, 2009

Citation
Xiaojiong Wu, Zhifang Lin, Huanyang Chen, and C. T. Chan, "Transformation optical design of a bending waveguide by use of isotropic materials," Appl. Opt. 48, G101-G105 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-31-G101


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777-1780 (2006). [CrossRef]
  2. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780-1782 (2006). [CrossRef]
  3. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express 14, 9794-9804 (2006). [CrossRef]
  4. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, 247(18 pp.) (2006).
  5. H. Chen, “Transformation optics in orthogonal coordinates,” J. Opt. A: Pure Appl. Opt. 11, 075102 (2009).
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006). [CrossRef]
  7. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nature Photon. 1, 224-227 (2007).
  8. H. Y. Chen, Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, “Extending the bandwidth of electromagnetic cloaks,” Phys. Rev. B 76, 241104 (2007).
  9. H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007). [CrossRef]
  10. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical coak: perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007). [CrossRef]
  11. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007). [CrossRef]
  12. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008). [CrossRef]
  13. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323, 110-112 (2009). [CrossRef]
  14. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366-369(2009). [CrossRef]
  15. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations,” Photon. Nanostruct. Fundam. Appl. 6, 87-95 (2008).
  16. H. Y. Chen and C. T. Chan, “Transformation media that rotate electromagnetic fields,” Appl. Phys. Lett. 90, 241105 (2007). [CrossRef]
  17. Y. Luo, H. S. Chen, J. Zhang, L. Ran, and J. A. Kong, “Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations,” Phys. Rev. B 77, 125127 (2008).
  18. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Electromagnetic wormholes and virtual magnetic monopoles from metamaterials,” Phys. Rev. Lett. 99, 183901 (2007). [CrossRef]
  19. A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens,” Opt. Lett. 32, 3432-3434 (2007). [CrossRef]
  20. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, “Optical design of reflectionless complex media by finite embedded coordinate transformations,” Phys. Rev. Lett. 100, 063903 (2008). [CrossRef]
  21. H. Y. Chen and C. T. Chan, “Electromagnetic wave manipulation by layered systems using the transformation media concept,” Phys. Rev. B 78, 054204 (2008).
  22. H. Y. Chen, X. Luo, H. Ma, and C. T. Chan, “The anti-cloak,” Opt. Express 16, 14603-14608 (2008). [CrossRef]
  23. M. Yan, W. Yan, and M. Qiu, “Cylindrical superlens by a coordinate transformation,” Phys. Rev. B 78, 125113 (2008).
  24. T. Yang, H. Y. Chen, X. Luo, and H. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16, 18545-18550 (2008). [CrossRef]
  25. Y. Luo, J. Zhang, H. S. Chen, B.-I. Wu, and J. A. Kong, “A new strategy to conceal an object from electromagnetic wave,” http://arxiv.org/abs/0808.0215.
  26. J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644-646 (2009). [CrossRef]
  27. Y. Lai, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009). [CrossRef]
  28. J. Huangfu, S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, B.-I. Wu, L. Ran, and J. A. Kong, “Application of coordinate transformation in bent waveguides,” J. Appl. Phys. 104, 014502 (2008). [CrossRef]
  29. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, “Transformation-optical design of adaptive beam bends and beam expanders,” Opt. Express 16, 11555-11567 (2008). [CrossRef]
  30. W. X. Jiang, T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, “Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials,” Phys. Rev. E 78, 066607 (2008). [CrossRef]
  31. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006).
  32. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nature Mater. 6, 946-950 (2007).
  33. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247-8256 (2006). [CrossRef]
  34. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686-1686 (2007). [CrossRef]
  35. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103 (2006).
  36. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699-1701 (2007). [CrossRef]
  37. M. Tsang and D. Psaltis, “Magnifying perfect lens and superlens design by coordinate transformation,” Phys. Rev. B 77, 035122 (2008).
  38. Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133-11141 (2007). [CrossRef]
  39. H. Y. Chen, J. Yang, J. Zi, and C. T. Chan, “Transformation media for linear liquid surface waves,” Europhys. Lett. 85, 24004 (2009). [CrossRef]
  40. H. Lee, Z. Liu, Y. Xiong, C. Sun, and X. Zhang, “Development of optical hyperlens for imaging below the diffraction limit,” Opt. Express 15, 15886-15891 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited