Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modeling the tapering effects of fabricated photonic crystal fibers and tailoring birefringence, dispersion, and supercontinuum generation properties

Not Accessible

Your library or personal account may give you access

Abstract

The effects of tapering fabricated air–silica photonic crystal fibers (PCFs) by tailoring the key modal and nonlinear properties of PCFs have been studied by analyzing the tapered structure using a finite difference mode calculation algorithm. The process of tapering is simulated through repeatedly redefining the geometry of the fiber cross section in a progressively tapered dimension preserving the shape. We tested the performance of the analysis by evaluating the modal characteristics, namely, the mode-effective area, birefringence, dispersion, nonlinearity, and supercontinuum properties of some well-known PCF examples under successive tapered conditions. Tapering, as an additional parameter, is seen to improve birefringence of a typical high-birefringence PCF by 1 order of magnitude. The analysis also estimates the extent of tapering that is required to achieve a target amount of evanescent field that has potential applications in an evanescent field sensor. Our investigation with tapered PCF structures includes tailoring dispersion properties and increasing nonlinearity, which leads to broader and lower threshold supercontinuum generation. The analysis should, therefore, be useful as a ready technique for taper analysis of any arbitrary structure PCF and also in PCF-preform (stacking structure) analysis, which can provide preestimates of properties in a targeted dimension of the final PCF before drawing.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers

Zhaoming Zhu and Thomas G. Brown
J. Opt. Soc. Am. B 21(2) 249-257 (2004)

Analysis of birefringent and dispersive properties of photonic crystal fibers

S. Lu, W. Li, H. Guo, and M. Lu
Appl. Opt. 50(30) 5798-5802 (2011)

Modified rectangular lattice photonic crystal fibers with high birefringence and negative dispersion

Soan Kim, Chul-Sik Kee, and Chung Ghiu Lee
Opt. Express 17(10) 7952-7957 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved