OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: G12–G20

Generation of supercontinuum and its theoretical study in three-ring silica microstructured optical fibers

Debashri Ghosh, Samudra Roy, Mrinmay Pal, Atasi Pal, Shyamal K. Bhadra, John McCarthy, Henry Bookey, and Ajoy Kar  »View Author Affiliations


Applied Optics, Vol. 48, Issue 31, pp. G12-G20 (2009)
http://dx.doi.org/10.1364/AO.48.000G12


View Full Text Article

Enhanced HTML    Acrobat PDF (766 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report supercontinuum generation in nonlinear microstructured optical fibers (MOFs) especially fabricated in a two-step stack and draw process having three rings of airholes. High air-filling fraction ( > 0.9 ) is obtained in a simple and straightforward way during the drawing process which is essential to enhance nonlinearity. Two of the fabricated samples are characterized and zero dispersion wavelength is tailored to achieve efficient pumping in the anomalous group velocity dispersion regime. The characteristics of the supercontinuum band as observed experimentally show good agreement with the predicted numerically simulated results, where soliton mediated dispersive waves are distinctly observed.

© 2009 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect
(060.4005) Fiber optics and optical communications : Microstructured fibers

History
Original Manuscript: April 1, 2009
Revised Manuscript: June 11, 2009
Manuscript Accepted: June 16, 2009
Published: July 7, 2009

Citation
Debashri Ghosh, Samudra Roy, Mrinmay Pal, Atasi Pal, Shyamal K. Bhadra, John McCarthy, Henry Bookey, and Ajoy Kar, "Generation of supercontinuum and its theoretical study in three-ring silica microstructured optical fibers," Appl. Opt. 48, G12-G20 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-31-G12


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996). [CrossRef]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997). [CrossRef]
  3. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, “Group velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662-1664 (1998). [CrossRef]
  4. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093-1102 (1999). [CrossRef]
  5. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultra-flattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790-792 (2000). [CrossRef]
  6. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807-809 (2000).
  7. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395-1397(1999). [CrossRef]
  8. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “ Experimental evidence for supercontinuum generation by fission of higher order solitons in photonics crystal fibers,” Phys. Rev. Lett. 88, 173901 (2002). [CrossRef]
  9. K. Sakamaki, M. Nakao, M. Naganuma, and M. Izutsu, “Soliton induced supercontinuum generation in photonic crystal fiber,” IEEE J. Sel. Top. Quantum Electron. 10, 876-884(2004). [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  11. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006). [CrossRef]
  12. K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13, 392-394 (1988). [CrossRef]
  13. J. C. Knight, T. A. Birks, and P. St. J. Russell, “Holey silica fibers,” in Optics of Nanostructured Materials, A. V. Markel and T. George, eds. (Wiley, 2001), pp. 39-71.
  14. K. E. Frampton, D. W. Hewak, K. M. Kiang, T. M. Monro, R. C. Moore, D. J. Richardson, H. Rutt, and J. A. Tucknott, “Fabrication of microstructured optical fibre,” WO 03/078339 A1 [World Intellectual Property Organization (PCT), 25 September 2003].
  15. N. F. Borelli, J. F. Wright,Jr., and R. R. Wusirika, “Method of fabricating photonic structures,” U.S. Patent 6,496,632 (17 December 2002).
  16. C. Jackobsen, G. Vienne, and T. P. Hansen, “Preform method of its production, and use thereof in production of microstructured optical fibres,” WO 03/078338 A2 [World Intellectual Property Organization (PCT), 25 September 2003].
  17. T. Hasegawa, M. Onishi, E. Sasaoka, and M. Nishimura, “Optical fiber and method for making the same,” U.S. Patent 6,766,088 (20 July 2004).
  18. A. F. Benabid and J. C. Knight, “Improvements in and relating to microstructured optical fibres,” WO 2004/001461 A1[World Intellectual Property Organization (PCT), 31 December 2003].
  19. J. Broeng, S. E. Barkou, and A. O. Bjarklev, “Microstructured optical fibres,” WO 99/064903 [World Intellectual Property Organization (PCT), 16 December 1999].
  20. P. St. J. Russell, T. A. Birks, J. C. Knight, and B. J. Mangan, “Photonic crystal fibre and a method for its production,” WO 00/060388 [World Intellectual Property Organization (PCT), 12 October 2000].
  21. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: capillary drawing,” J. Lightwave Technol. 19, 1924-1931 (2001). [CrossRef]
  22. S. C. Xue, M. C. J. Large, G. W. Barton, R. I. Tanner, L. Poladian, and R. Lwin, “Role of material properties and drawing conditions in the fabrication of microstructured optical fibers,” J. Lightwave Technol. 24, 853-860(2006). [CrossRef]
  23. W. J. Wadsworth, N. Joly, J. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single mode photonic crystal fibers,” Opt. Express 12, 299-309 (2004). [CrossRef]
  24. A. Ferrando, E. Silvestre, P. Andres, J. J. Miret, and M. V. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9, 687-697(2001).
  25. D. Ghosh, S. Roy, A. Pal, M. Pal, S. Bandyopadhyay, and S. K. Bhadra, “Analysis of fundamental modal effective index in microstructured fibers: a variational approach,” submitted to Appl. Phys. B.
  26. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  27. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol. 6, 181-191 (2000).
  28. K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightwave Technol. 23, 3580-3590 (2005). [CrossRef]
  29. A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1999).
  30. N. A. Mortensen, J. R. Folken, P. M. W. Skovgaard, and J. Broeng, “Numerical aperture of single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 14, 1094-1096 (2002).
  31. Q. Lin and G. P. Agrawal, “Raman response function for silica fibers,” Opt. Lett. 31, 3086-3088 (2006). [CrossRef]
  32. N. Nishizawa and T. Goto, “Pulse trapping by ultrashort soliton pulses in optical fibers across zero-dispersion wavelength,” Opt. Lett. 27, 152-154 (2002). [CrossRef]
  33. N. Nishizawa and T. Goto, “Characteristics of pulse trapping by use of ultrashort soliton pulses in optical fibers across the zero-dispersion wavelength,” Opt. Express 10, 1151-1159(2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited