OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: G131–G138

Mode degeneration in bent photonic crystal fiber study by using the finite element method

B. M. Azizur Rahman, Namassivayane Kejalakshmy, Muhammad Uthman, Arti Agrawal, Tiparatana Wongcharoen, and Kenneth T. V. Grattan  »View Author Affiliations


Applied Optics, Vol. 48, Issue 31, pp. G131-G138 (2009)
http://dx.doi.org/10.1364/AO.48.00G131


View Full Text Article

Enhanced HTML    Acrobat PDF (1013 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The development of highly dispersive lower and higher order cladding modes and their degeneration with respect to the fundamental core mode in a bent photonic crystal fiber is rigorously studied by use of the full-vectorial finite element method. It is shown that changes in the bending radius can modify the modal properties of large-area photonic crystal fibers, important for a number of potential practical applications.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

History
Original Manuscript: June 16, 2009
Revised Manuscript: September 16, 2009
Manuscript Accepted: October 12, 2009
Published: October 23, 2009

Citation
B. M. Azizur Rahman, Namassivayane Kejalakshmy, Muhammad Uthman, Arti Agrawal, Tiparatana Wongcharoen, and Kenneth T. V. Grattan, "Mode degeneration in bent photonic crystal fiber study by using the finite element method," Appl. Opt. 48, G131-G138 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-31-G131


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729-4749 (2006). [CrossRef]
  2. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998-1005 (1997). [CrossRef]
  3. M. Zirngibl, C. H. Joyner, L. W. Stulz, Th. Gaiffe, and C. Dragone, “Polarization independent 8×8 waveguide grating multiplexers on InP,” Electron. Lett. 29, 201-202 (1993). [CrossRef]
  4. R. R. Hayes and D. Yap, “GaAs spiral optical waveguides for delay-line applications,” J. Lightwave Technol. 11, 523-528(1993). [CrossRef]
  5. X. Jiang, W. Qi, H. Zhang, Y. Tang, Y. Hao, J. Yang, and M. Wang, “Loss crosstalk 1×2 thermooptic digital optical switch with integrated S-bend attenuator,” IEEE Photon. Technol. Lett. 18, 610-612 (2006). [CrossRef]
  6. K. Saitoh, N. J. Florous, M. Koshiba, and M. Skorobogatiy, “Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers,” Opt. Express 13, 10327-10335 (2005). [CrossRef] [PubMed]
  7. K. Iizawa, S. K. Varshney, Y. Tsuchida, K. Saitoh, and M. Koshiba, “Bend-insensitive lasing characteristics of singlemode, large-mode-area Ytterbium-doped photonic crystal fiber,” Opt. Express 16, 579-591 (2008). [CrossRef] [PubMed]
  8. M. van Eijkelenborg, J. Canning, T. Ryan, and K. Lyytikainen, “Bending-induced coloring in a photonic crystal fiber,” Opt. Express 7, 88-94 (2000). [CrossRef] [PubMed]
  9. J. Olszewski, M. Szpulak, and W. Urbańczyk, “Effect of coupling between fundamental and cladding modes on bending losses in photonic crystal fibers,” Opt. Express 13, 6015-6022 (2005). [CrossRef] [PubMed]
  10. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc. Am. A 15, 748-752 (1998). [CrossRef]
  11. J. Arriaga, J. C. Knight, and P. St. J. Russell, “Modeling the propagation of light in photonic crystal fibers,” Physica D (Amsterdam) 189, 100-106 (2004). [CrossRef]
  12. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093-1102 (1999). [CrossRef]
  13. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26, 1660-1662 (2001). [CrossRef]
  14. W. Zhi, R. Guobin, L. Shuqin, and J. Shuisheng, “Supercell lattice method for photonic crystal fibers,” Opt. Express 11, 980-991 (2003). [CrossRef] [PubMed]
  15. J. Riishede, N. A. Mortensen, and J. Lægsgaard, “A “poor man's approach” to modelling micro-structured optical fibres,” J. Opt. A Pure Appl. Opt. 5, 534-538 (2003). [CrossRef]
  16. B. M. A. Rahman, A. K. M. S. Kabir, M. Rajarajan, and K. T. V. Grattan, “Finite element modal solutions of planar photonic crystal fibers with rectangular air-holes,” Opt. Quantum Electron. 37, 171-183 (2005). [CrossRef]
  17. F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, and S. Trillo, “Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers,” Opt. Express 10, 54-59 (2002). [PubMed]
  18. B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol. 2, 682-688 (1984). [CrossRef]
  19. N. Kejalakshmy, B. M. A. Rahman, A. K. M. S. Kabir, M. Rajarajan, and K. T. V. Grattan, “Single mode operation of photonic crystal fiber using a full vectorial finite element method,” Proc. SPIE 6588, 65880T (2007). [CrossRef]
  20. M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75-83 (1975). [CrossRef]
  21. P. Bienstman, E. Six, M. Roelens, M. Vanwolleghem, and R. Baets, “Calculation of bending losses in dielectric waveguides using eigenmode expansion and perfectly matched layers,” IEEE Photon. Technol. Lett. 14, 164-166(2002). [CrossRef]
  22. J. Gu, P. Besse, and H. Melchior, “Novel method for analysis of curved optical rib-waveguides,” Electron. Lett. 25, 278-280(1989). [CrossRef]
  23. S. Kim and A. Gopinath, “Vector analysis of optical dielectric waveguide bends using finite-difference method,” J. Lightwave Technol. 14, 2085-2092 (1996). [CrossRef]
  24. F. Wassmann, “Modal field analysis of circularly bent single-mode fibers,” J. Lightwave Technol. 17, 957-968 (1999). [CrossRef]
  25. K. Thyagarajan, M. R. Shenoy, and A. K. Ghatak, “Accurate numerical method for the calculation of bending loss in optical waveguides using a matrix approach,” Opt. Lett. 12, 296-298 (1987). [CrossRef] [PubMed]
  26. W. Berglund and A. Gopinath, “WKB analysis of bend losses in optical waveguides,” J. Lightwave Technol. 18, 1161-1166(2000). [CrossRef]
  27. T. Yamamoto and M. Koshiba, “Numerical analysis of curvature loss in optical waveguides by the finite-element method,” J. Lightwave Technol. 11, 1579-1583 (1993). [CrossRef]
  28. K. Saitoh, Y. Tsuchida, M. Koshiba, and N. A. Mortensen, “Endlessly single-mode holey fibers: the influence of core design,” Opt. Express 13, 10833-10839 (2005). [CrossRef] [PubMed]
  29. R. Jedidi and R. Pierre, “High-order finite-element method for the computation of bending loss in optical waveguides,” J. Lightwave Technol. 25, 2618-2630 (2007). [CrossRef]
  30. R. Baets and P. E. Lagasse, “Loss calculation and design of arbitrarily curved integrated-optic waveguides,” J. Opt. Soc. Am. 73, 177-182 (1983). [CrossRef]
  31. M. Rajarajan, S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, and H. A. El-Mikathi, “Characterization of low-loss waveguide bends with offset optimisation for compact photonic integrated circuits,” IEE Proc. Optoelectron. 147, 382-388 (2000). [CrossRef]
  32. N. H. Vu, I. Hwang, and Y. Lee, “Bending loss analyses of photonic crystal fibers based on the finite-difference time-domain method,” Opt. Lett. 33, 119-121 (2008). [CrossRef] [PubMed]
  33. H. F. Taylor, “Bending effects in optical fibers,” J. Lightwave Technol. 2, 617-628 (1984). [CrossRef]
  34. A. Argyros, T. Birks, S. Leon-Saval, C. M. B. Cordeiro, and P. St. J. Russell, “Guidance properties of low-contrast photonic bandgap fibers,” Opt. Express 13, 2503-2511 (2005). [CrossRef] [PubMed]
  35. F. L. Teixeira and W. C. Chew, “General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media,” IEEE Microwave Guid. Wave Lett. 8, 223-225 (1998). [CrossRef]
  36. M. Koshiba and K. Saitoh, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38927-933 (2002). [CrossRef]
  37. A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2000).
  38. T. Martynkien, J. Olszewski, M. Szpulak, G. Golojuch, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental investigations of bending loss oscillations in large mode area photonic crystal fibers,” Opt. Express 15, 13547-13556 (2007). [CrossRef] [PubMed]
  39. M. Koshiba and K. Saitoh, “Structural dependence of effective area and mode field diameter for holey fibers,” Opt. Express 11, 1746-1756 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited