OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: G163–G168

Controlled excitation of scar modes in passive and active multimode chaotic fiber

Claire Michel, Valérie Doya, Sorin Tascu, Wilfried Blanc, Olivier Legrand, and Fabrice Mortessagne  »View Author Affiliations


Applied Optics, Vol. 48, Issue 31, pp. G163-G168 (2009)
http://dx.doi.org/10.1364/AO.48.00G163


View Full Text Article

Enhanced HTML    Acrobat PDF (645 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multimode optical fiber with a D-shaped cross section is an experimental paradigm of a wave system with chaotic ray dynamics. We show that seldom but usable modes, called scar modes, localized along some particular direction of the geometric trajectories, can be selectively excited. We report numerical simulations that demonstrate the importance of the so-called self-focal point in the scar mode selection process. We use a localized illumination in a passive fiber, or a localized gain in a ytterbium-doped fiber, located in the vicinity of this special point to control scar mode selection.

© 2009 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(350.5500) Other areas of optics : Propagation

History
Original Manuscript: June 16, 2009
Revised Manuscript: October 8, 2009
Manuscript Accepted: October 12, 2009
Published: October 30, 2009

Citation
Claire Michel, Valérie Doya, Sorin Tascu, Wilfried Blanc, Olivier Legrand, and Fabrice Mortessagne, "Controlled excitation of scar modes in passive and active multimode chaotic fiber," Appl. Opt. 48, G163-G168 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-31-G163


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H.-J. Stöckmann, Quantum Chaos: an Introduction (Cambridge U. Press1999).
  2. K. Schaadt, T. Guhr, C. Ellegaard, and M. Oxborrow, “Experiments on elastomechanical wave functions in chaotic plates and their statistical features,” Phys. Rev. E 68, 036205 (2003). [CrossRef]
  3. H.-J. Stöckmann and J. Stein, ““Quantum chaos” in billiard studied by microwave absorption,” Phys. Rev. Lett. 64, 2215-2218 (1990). [CrossRef] [PubMed]
  4. S. Sridhar, “Experimental observation of scarred eigenfunctions of chaotic microwave cavities,” Phys. Rev. Lett. 67, 785-788 (1991). [CrossRef] [PubMed]
  5. V. Doya, O. Legrand, F. Mortessagne, and Ch. Miniatura, “Speckle statistics in a chaotic multimode fiber,” Phys. Rev. E 65, 056223 (2002). [CrossRef]
  6. V. Doya, O. Legrand, and F. Mortessagne, “Optimized absorption in a chaotic double-clad fiber amplifier,” Opt. Lett. 26, 872-874 (2001). [CrossRef]
  7. T. Harayama, T. Fukushima, P. Davis, P. O. Vaccaro, T. Miyasaka, T. Nishimura, and T. Aida, “Lasing on scar modes in fully chaotic microcavities,” Phys. Rev. E 67, 015207 (2003). [CrossRef]
  8. W. Fang and H. Cao, “Wave interference effect on polymer microstadium laser,” Appl. Phys. Lett. 91, 041108 (2007). [CrossRef]
  9. W. Fang, A. Yamilov, and H. Cao, “Analysis of high-quality modes in open chaotic microcavities,” Phys. Rev. A 72, 023815 (2005). [CrossRef]
  10. M. V. Berry, “Regular and irregular semiclassical wavefunctions,” J. Phys. A 10, 2083-2092 (1977). [CrossRef]
  11. E. J. Heller, “Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits,” Phys. Rev. Lett. 53, 1515-1518 (1984). [CrossRef]
  12. M. V. Berry, “Quantum scars of classical closed orbits in phase space,” Proc. R. Soc. London Ser. A 423, 219-231(1989). [CrossRef]
  13. L. Kaplan, “Scars in quantum chaotic wavefunctions,” Nonlinearity 12, R1-R40 (1999). [CrossRef]
  14. B. Li, “Numerical study of scars in a chaotic billiard,” Phys. Rev. E 55, 5376-5379 (1997). [CrossRef]
  15. E. B. Bogomolny, “Smoothed wave functions of chaotic quantum systems,” Physica D: Nonlinear Phenomena 31, 169-189 (1988). [CrossRef]
  16. M. D. Feit and J. A. Fleck, Jr., “Computation of mode properties in optical fiber waveguides by a propagating beam method,” Appl. Opt. 19, 1154-1164 (1980). [CrossRef] [PubMed]
  17. C. Michel, V. Doya, O. Legrand, and F. Mortessagne, “Selective amplification of scars in a chaotic optical fiber,” Phys. Rev. Lett. 99, 224101 (2007). [CrossRef]
  18. M. D. Feit and J. A. Fleck, Jr., “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990-3998(1978). [CrossRef] [PubMed]
  19. P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66, 144202 (2002). [CrossRef]
  20. V. Doya, O. Legrand, and F. Mortessagne, “Optimized absorption in a chaotic double-clad fiber amplifier,” Opt. Lett. 26, 872-874 (2001). [CrossRef]
  21. P. Leproux, V. Doya, P. Roy, D. Pagnoux, F. Mortessagne, and O. Legrand, “Experimental study of pump power absorption along rare-earth-doped double clad optical fibres,” Opt. Commun. 218, 249-254 (2003). [CrossRef]
  22. This step has been achieved in collaboration with the Optical Development Workshop at the Institute of Plasma Physics, Prague, Czech Republic.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited