OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 31 — Nov. 1, 2009
  • pp: G33–G37

Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination

Arijit Kumar De, Debjit Roy, Aveek Dutta, and Debabrata Goswami  »View Author Affiliations


Applied Optics, Vol. 48, Issue 31, pp. G33-G37 (2009)
http://dx.doi.org/10.1364/AO.48.000G33


View Full Text Article

Enhanced HTML    Acrobat PDF (466 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Here we report how ultrafast pulsed illumination at low average power results in a stable three- dimensional (3D) optical trap holding latex nanoparticles which is otherwise not possible with continuous wave lasers at the same power level. The gigantic peak power of a femtosecond pulse exerts a huge instantaneous gradient force that has been predicted theoretically earlier and implemented for microsecond pulses in a different context by others. In addition, the resulting two-photon fluorescence allows direct observation of trapping events by providing intrinsic 3D resolution.

© 2009 Optical Society of America

OCIS Codes
(300.2530) Spectroscopy : Fluorescence, laser-induced
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

History
Original Manuscript: April 16, 2009
Revised Manuscript: June 24, 2009
Manuscript Accepted: July 6, 2009
Published: July 22, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Arijit Kumar De, Debjit Roy, Aveek Dutta, and Debabrata Goswami, "Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination," Appl. Opt. 48, G33-G37 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-31-G33


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Applications of laser radiation pressure,” Science 210, 1081-1088 (1980). [CrossRef] [PubMed]
  2. A. Ashkin, “History of optical trapping ad manipulation of small-neutral particle, atoms and molecules,” IEEE J. Sel. Top. Quantum Electron. 6, 841-855 (2000). [CrossRef]
  3. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787-2809 (2004). [CrossRef]
  4. P.M.Sheetz, ed., Laser Tweezers in Cell Biology (Academic, 1998).
  5. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers: a Reprint Volume with Commentaries (World Scientific, 2006). [CrossRef] [PubMed]
  6. C. Bustamante, J. C. Macosko, and G. J. L. Wuite, “Grabbing the cat by the tail: manipulating molecules one by one,” Nat. Rev. Mol. Cell Biol. 1, 130-136 (2000). [CrossRef]
  7. J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4, 115-118 (2004). [CrossRef]
  8. K. Ajito and K. Torimistu, “Single nanoparticle trapping using a Raman tweezers microscope,” Appl. Spectrosc. 56, 541-544 (2002). [CrossRef]
  9. D. L. J. Vossen, D. Fific, J. Penninkhof, T. van Dillen, A. Pollman, and A. van Blaaderen, “Combined optical tweezers/ion beam technique to tune colloidal masks for nanolithography,” Nano Lett. 5, 1175-1179 (2005). [CrossRef] [PubMed]
  10. S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett. 4, 1415-1419 (2004). [CrossRef]
  11. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937-1942 (2005). [CrossRef] [PubMed]
  12. A. Ashkin and J. M. Dziedzic, “Trapping and manipulation of viruses and bacteria,” Science 235, 1517-1520 (1987). [CrossRef] [PubMed]
  13. P. A. M. Neto and H. M. Nussenzweig, “Theory of optical tweezers,” Europhys. Lett. 50, 702-708 (2000). [CrossRef]
  14. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930-932 (1994). [CrossRef] [PubMed]
  15. J. Zhou, L. Qu, K. Yao, M. Zhong, and Y. Li, “Observing nanometre scale particles with light scattering for manipulation using optical tweezers,” Chin. Phys. Lett. 25, 3995 (2008). [CrossRef]
  16. A. K. De, D. Roy, B. Saha, and D. Goswami, “A simple method for constructing and calibrating an optical tweezer,” Curr. Sci. 95, 723-724 (2008).
  17. D. T. Chiu and R. N. Zare, “Biased diffusion, optical trapping, and manipulation of single molecules in solution,” J. Am. Chem. Soc. 118, 6512-6513 (1996). [CrossRef]
  18. Y. Liu, G. J. Sonek, M. W. Berns, K. Konig, and B. J. Tromberg, “Two-photon fluorescence excitation in continuous-wave infrared optical tweezers,” Opt. Lett. 20, 2246-2248 (1995). [CrossRef] [PubMed]
  19. B. Agate, C. T. A. Brown, W. Sibbert, and K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express 12, 3011-3017 (2004). [CrossRef] [PubMed]
  20. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73-76 (1990). [CrossRef] [PubMed]
  21. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science 275, 530-532 (1997). [CrossRef] [PubMed]
  22. L. Wang and C. Zhao, “Dynamic radiation force of a pulsed Gaussian beam acting on a Rayleigh dielectric sphere,” Opt. Express 15, 10615-10621 (2007). [CrossRef] [PubMed]
  23. A. A. Ambaredkar and Y. Li, “Optical levitation and manipulation of stuck particles with pulsed optical tweezers,” Opt. Lett. 30, 1797-1799 (2005). [CrossRef]
  24. Q. Xing, F. Mao, L. Chai, and Q. Wang, “Numerical modeling and theoretical analysis of femtosecond laser tweezers,” Opt. Laser Technol. 36, 635-639 (2004). [CrossRef]
  25. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308-1316 (2003). [CrossRef] [PubMed]
  26. A. K. De and D. Goswami, “Exploring the nature of photo-damage in two-photon excitation by fluorescence intensity modulation,” J. Fluoresc. 19, 381-386 (2009). [CrossRef]
  27. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 µm wavelength region,” Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited