OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 32 — Nov. 10, 2009
  • pp: 6172–6177

Microgrinding of lensed fibers by means of a scanning-probe microscope setup

Sergii Yakunin and Johannes Heitz  »View Author Affiliations

Applied Optics, Vol. 48, Issue 32, pp. 6172-6177 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (991 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a precision grinding procedure that allows treating a previously etched fiber tip to conform to predefined shapes, including hemispherical and axial conical (axicon) lenses. The grinding method is based on mechanical polishing with the fiber tip moving in a translational mode inside a conical polishing surface. The grinding procedure is performed in a homemade scanning probe microscope equipped with a shear-force sensor based on a piezoelectric tuning fork as well as with capacitor position sensors. The scanning probe microscope is operated either as atomic force microscope for topographic characterization of the tip shape and the polishing surface or as a scanning near-field microscope for measurement of the light focusing properties of the ground microlenses.

© 2009 Optical Society of America

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(220.4000) Optical design and fabrication : Microstructure fabrication
(220.4610) Optical design and fabrication : Optical fabrication
(220.5450) Optical design and fabrication : Polishing
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 4, 2009
Revised Manuscript: September 24, 2009
Manuscript Accepted: October 13, 2009
Published: November 2, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Sergii Yakunin and Johannes Heitz, "Microgrinding of lensed fibers by means of a scanning-probe microscope setup," Appl. Opt. 48, 6172-6177 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159-161(1994). [CrossRef] [PubMed]
  2. G. Wysocki, S. T. Dai, T. Brandstetter, J. Heitz, and D. Bäuerle, “Etching of crystalline Si in Cl2 atmosphere by means of an optical fiber tip,” Appl. Phys. Lett. 79, 159-161 (2001). [CrossRef]
  3. G. Wysocki, J. Heitz, and D. Bäuerle, “Near-field optical nanopatterning of crystalline silicon,” Appl. Phys. Lett. 84, 2025-2027 (2004). [CrossRef]
  4. D. J. Hwang, H. Jeon, and C. P. Grigoropoulos, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118(2007). [CrossRef]
  5. D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Laser ablation-induced spectral plasma characteristics in optical far- and near fields,” J. Appl. Phys. 104, 013110 (2008). [CrossRef]
  6. J. Heitz, S. Yakunin, T. Stehrer, G. Wysocki, and D. Bäuerle, “Laser-induced nanopatterning, ablation, and plasma spectroscopy in the near-field of an optical fiber tip,” Proc. SPIE 7131, 71311W (2009).
  7. P. Moar, F. Ladouceur, and L. Cahill, “Numerical analysis of the transmission efficiency of heat-drawn and chemically etched scanning near-field optical microscopes,” Appl. Opt. 39, 1966-1972 (2000). [CrossRef]
  8. E. Mcleod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3, 413-417 (2008). [CrossRef] [PubMed]
  9. Ju. Y. Lee, B. H. Hong, W. Y. Kim, S. K. Min, Yu. Kim, M. V. Jouravlev, R. Bose, K. S. Kim, In-Ch. Hwang, L. J. Kaufman, Ch. W. Wong, Ph. Kim, and K. S. Kim, “Near-field focusing and magnification through self-assembled nanoscale spherical lenses,” Nature 460, 498-501 (2009). [CrossRef]
  10. D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys. A 86, 313-314 (2007). [CrossRef]
  11. H. Sakaguchi, N. Seki, and S. Yamamoto, “Power coupling from laser diodes into single-mode fibres with quadrangular pyramid-shaped hemiellipsoidal ends,” Electron. Lett. 17, 425-426 (1981). [CrossRef]
  12. M. Kawachi and T. Edahiro, “Microlens formation on VAD single-mode fibre ends,” Electron. Lett. 18, 71-72(1982). [CrossRef]
  13. Y.-T. Tseng, T.-Y. Hung, J.-H. Liu, and C.-H. Chang, “Optical filigber polishing automation with on-line force sensing,” Int. J. Mach. Tools Manuf. 47, 892-899 (2007). [CrossRef]
  14. S. Lin, “A lensed fiber workstation based on the elastic polishing plate method,” Precis. Eng. 29, 146-150 (2005). [CrossRef]
  15. T. Grosjean, S. S. Saleh, M. A. Suarez, I. A. Ibrahim, V. Piquerey, D. Charraut, and P. Sandoz, “Fiber microaxicons fabricated by a polishing technique for the generation of Bessel-like beams,” Appl. Opt. 46, 8061-8067 (2007). [CrossRef] [PubMed]
  16. S. Yakunin, J. Heitz, and T. Steher, “Verfahren zum Schleifen einer Mikrolinse am Ende einer optischen Faser,” Austrian patent application AT869/2009 (application data June 2009).
  17. S. Yakunin, T. Stehrer, J. D. Pedarnig, and J. Heitz, “Combination of laser-based nano-processing and micro-analysis by means of a lensed optical fiber,” J. Optoelectron. Adv. Mater. (to be published).
  18. R. Stockle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, “High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75, 160-162 (1999). [CrossRef]
  19. P. M. Williams, K. M. Shakesheff, M. C. Davies, D. E. Jackson, C. J. Roberts, and S. J. B. Tendler, “Blind reconstruction of scanning probe image data,” J. Vac. Sci. Technol. B 14, 1557-1562 (1996). [CrossRef]
  20. A. A. Bukharaev, N. V. Berdunov, D. V. Ovchinnikov, and K. M. Salikhov, “Three-dimensional probe and surface reconstruction for atomic force microscopy using a deconvolution algorithm,” Scanning Microsc. 12, 225-234 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited