OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 32 — Nov. 10, 2009
  • pp: 6213–6222

Design of flat-top interleaver and tunable dispersion compensator using cascaded Sagnac loop mirrors and ring resonators

Yu Zhang, Wencai Huang, Xiulin Wang, Huiying Xu, and Zhiping Cai  »View Author Affiliations


Applied Optics, Vol. 48, Issue 32, pp. 6213-6222 (2009)
http://dx.doi.org/10.1364/AO.48.006213


View Full Text Article

Enhanced HTML    Acrobat PDF (1416 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose multicavity reflective Gires–Tournois etalons (MCR-GTE) and generalized multicavity transmissive Gires–Tournois etalons (GMCT-GTE) composed of cascaded Sagnac loop mirrors and ring resonators, respectively. Michelson–Gires–Tournois interferometers (MGTI) based on two sets of MCR-GTEs are theoretically studied. As the focal point, we demonstrate the GMCT-GTE, which is a reciprocal and transmissive element as a tunable dispersion compensator (TDC) for the proposed interleaver. The reciprocal and transmissive TDC is superior to reflective ones in terms of saving the number of TDCs. Only one set of TDCs is sufficient for the two output ports of the MGTI proposed. Discussions on fabrication tolerances are given as well, focusing on two main factors that degrade the performance of the interleaver and its TDC in practice, i.e., the length mismatch and loss.

© 2009 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.2440) Instrumentation, measurement, and metrology : Filters
(130.3120) Integrated optics : Integrated optics devices
(130.2035) Integrated optics : Dispersion compensation devices

ToC Category:
Integrated Optics

History
Original Manuscript: July 27, 2009
Revised Manuscript: October 20, 2009
Manuscript Accepted: October 20, 2009
Published: November 4, 2009

Citation
Yu Zhang, Wencai Huang, Xiulin Wang, Huiying Xu, and Zhiping Cai, "Design of flat-top interleaver and tunable dispersion compensator using cascaded Sagnac loop mirrors and ring resonators," Appl. Opt. 48, 6213-6222 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-32-6213


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. J. Carlsen and C. F. Buhrer, “Flat passband birefringent wavelength-division multiplexers,” Electron. Lett. 23, 106-107 (1987). [CrossRef]
  2. J. Zhang, L. Liu, and Y. Zhou, “A tunable interleaver filter based on analog birefringent units,” Opt. Commun. 227, 283-294 (2003). [CrossRef]
  3. H. Chen, P. Gu, Y. Zhang, M. Ai, W. Lv, and B. Jin, “Analysis on the match of the reflectivity of the multi-cavity thin film interleaver,” Opt. Commun. 236, 335-341 (2004). [CrossRef]
  4. P. Gu, H. Chen, Y. Zhang, H. Li, and X. Liu, “Wavelength-division multiplexed thin-film filters used in tilted incident angles of light,” Appl. Opt. 43, 2066-2070 (2004). [CrossRef] [PubMed]
  5. D.-W. Huang, T.-H, Chiu, and Y. Lai, “Arrayed waveguide grating DWDM interleaver,” in Proceedings of Optical Fiber Communication Conference and Exhibit 2001 (IEEE, 2001), paper WDD80.
  6. J. J. Pan and Y. Shi, “Dense WDM multiplexer and demultiplexer with 0.4 nm channel spacing,” Electron. Lett. 34, 74-75(1998). [CrossRef]
  7. F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, and K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388-390 (1995). [CrossRef]
  8. L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. St. J. Russell, “Novel add/drop filters for wavelength-division-multiplexing optical fiber systems using a Bragg gratng assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8, 1656-1658(1996). [CrossRef]
  9. M. Oguma, T. Kitoh, Y. Inoue, T. Mizuno, T. Shibata, M. Kohtoku, and Y. Hibino, “Compact and low-loss interleave filter employing lattice-form structure and silica-based waveguide,” J. Lightwave Technol. 22, 895-902 (2004). [CrossRef]
  10. J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett. 20, 2165-2167 (2008). [CrossRef]
  11. M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200 GHz FSR periodic multi/demultiplexer with flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator,” IEEE Photon. Technol. Lett. 12, 1174-1176 (2000). [CrossRef]
  12. K. Oda, N. Takato, H. Toba, and K. Nosu, “A wide-band guided-wave periodic multi/demultiplexer with a ring resonator for optical FDM transmission systems,” J. Lightwave Technol. 6, 1016-1023 (1988). [CrossRef]
  13. Z. Wang, S.-J. Chang, C.-Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19, 1072-1074 (2007). [CrossRef]
  14. X. Ye, M. Zhang, and P. Ye, “Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer,” Opt. Commun. 257, 255-260 (2006). [CrossRef]
  15. C. H. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh, and W. H. Cheng, “Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer,” Opt. Commun. 237, 285-293 (2004). [CrossRef]
  16. L. Wei and J. W. Y. Lit, “Design optimization of flattop interleaver and its dispersion compensation,” Opt. Express 15, 6439-6457 (2007). [CrossRef] [PubMed]
  17. X. Shu, K. Sugden, and I. Bennion, “All-fiber Michelson-Gires-Tournois interferometer as multi-passband filter,” in Proceedings of the Lightwave Technologies in Instrumentation and Measurement Conference 2004 (IEEE, 2004), pp. 144-147.
  18. Q, Wang, Y, Zhang, and Y, C. Soh, “An efficient all-fiber interleaving filter using fiber Gires-Tournois etalons on a Michelson interferometer,” in Proceedings of Optical Fiber Communication Conference and Exhibit 2006 (IEEE, 2006), paper OW170.
  19. D. Yang, C. Lin, W. Chen, and G. Barbarossa, “Fiber dispersion and dispersion slope compensation in a 40-channel 10 Gb/s 3200 km transmission experiment using cascaded single-cavity Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 16, 299-301 (2004). [CrossRef]
  20. X. Shu, K. Sugden, P. Rhead, J. Mitchell, I. Felmeri, G. Lloyd, K. Byron, Z. Huang, I. Khrushchev, and I. Bennion, “Tunable dispersion compensator based on distributed Gires-Tournois etalons,” IEEE Photon. Technol. Lett. 15, 1111-1113(2003). [CrossRef]
  21. J. E. Heebner, V. Wong, A. Schweinsberg, R. W. Boyd, and D. J. Jackson, “Optical transmission characteristics of fiber ring resonators, “IEEE J. Quantum Electron. 40, 726-730(2004). [CrossRef]
  22. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, and R. E. Scotti, “Integrated all-pass filters for tunable dispersion and dispersion slope compensation,” IEEE Photon. Technol. Lett. 11, 1623-1625 (1999). [CrossRef]
  23. O, Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview,” J. Lightwave Technol. 22, 1380-1394 (2004). [CrossRef]
  24. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391-416 (1990). [CrossRef]
  25. Z. Wang and J. C. Yung, “Thermal properties and passband improvement of high index contrast micro-ring resonator by phase error correction,” in European Conference on Optical Communications (IEEE, 2005), paper We4.P.44.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited