OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 32 — Nov. 10, 2009
  • pp: 6241–6251

Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting

Aongus McCarthy, Robert J. Collins, Nils J. Krichel, Verónica Fernández, Andrew M. Wallace, and Gerald S. Buller  »View Author Affiliations


Applied Optics, Vol. 48, Issue 32, pp. 6241-6251 (2009)
http://dx.doi.org/10.1364/AO.48.006241


View Full Text Article

Enhanced HTML    Acrobat PDF (1610 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a scanning time-of-flight system which uses the time-correlated single-photon counting technique to produce three-dimensional depth images of distant, noncooperative surfaces when these targets are illuminated by a kHz to MHz repetition rate pulsed laser source. The data for the scene are acquired using a scanning optical system and an individual single-photon detector. Depth images have been successfully acquired with centimeter x y z resolution, in daylight conditions, for low-signature targets in field trials at distances of up to 325 m using an output illumination with an average optical power of less than 50 μW .

© 2009 Optical Society of America

OCIS Codes
(040.3780) Detectors : Low light level
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(150.6910) Machine vision : Three-dimensional sensing
(280.3400) Remote sensing and sensors : Laser range finder

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: July 7, 2009
Revised Manuscript: October 11, 2009
Manuscript Accepted: October 12, 2009
Published: November 4, 2009

Citation
Aongus McCarthy, Robert J. Collins, Nils J. Krichel, Verónica Fernández, Andrew M. Wallace, and Gerald S. Buller, "Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting," Appl. Opt. 48, 6241-6251 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-32-6241


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10-22 (2000). [CrossRef]
  2. M. C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10-19 (2001). [CrossRef]
  3. C. Mallet and F. Bretar, “Full-waveform topographic lidar: state-of-the-art,” ISPRS J. Photogramm. Remote Sens. 64, 1-16 (2009). [CrossRef]
  4. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O'Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002). [CrossRef]
  5. J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34, 503-549 (2002). [CrossRef]
  6. C. Ho, K. L. Albright, A. W. Bird, J. Bradley, D. E. Casperson, M. Hindman, W. C. Priedhorsky, W. R. Scarlett, R. C. Smith, J. Theiler, and S. K. Wilson, “Demonstration of literal three-dimensional imaging,” Appl. Opt. 38, 1833-1840(1999). [CrossRef]
  7. R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23-36(2005).
  8. J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22, 543-545(1997). [CrossRef]
  9. W. C. Priedhorsky, R. C. Smith, and C. Ho, “Laser ranging and mapping with a photon-counting detector,” Appl. Opt. 35, 441-452 (1996). [CrossRef]
  10. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11, 712-716 (2000). [CrossRef]
  11. B. W. Schilling, D. N. Barr, G. C. Templeton, L. J. Mizerka, and C. W. Trussell, “Multiple-return laser radar for three-dimensional imaging through obscurations,” Appl. Opt. 41, 2791-2799 (2002). [CrossRef]
  12. G. S. Buller, R. D. Harkins, A. McCarthy, P. A. Hiskett, G. R. MacKinnon, G. R. Smith, R. Sung, A. M. Wallace, R. A. Lamb, K. D. Ridley, and J. G. Rarity, “Multiple wavelength time-of-flight sensor based on time-correlated single-photon counting,” Rev. Sci. Instrum. 76, 083112(2005). [CrossRef]
  13. G. S. Buller, R. E. Warburton, S. Pellegrini, J. S. Ng, J. P. R. David, L. J. J. Tan, A. B. Krysa, and S. Cova, “Single-photon avalanche diode detectors for quantum key distribution,” IET Optoelectron. 1, 249-254 (2007). [CrossRef]
  14. P. Gatt, S. Johnson, and T. Nichols, “Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics,” Appl. Opt. 48, 3262-3276 (2009). [CrossRef]
  15. D. G. Fouche, “Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors,” Appl. Opt. 42, 5388-5398 (2003). [CrossRef]
  16. J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37, 7298-7304 (1998). [CrossRef]
  17. J. Massa, G. Buller, A. Walker, G. Smith, S. Cova, M. Umasuthan, and A. Wallace, “Optical design and evaluation of a three-dimensional imaging and ranging system based on time-correlated single-photon counting,” Appl. Opt. 41, 1063-1070 (2002). [CrossRef]
  18. C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits 40, 1847-1854 (2005). [CrossRef]
  19. D. T. Neilson, S. M. Prince, D. A. Baillie, and F. A. P. Tooley, “Optical design of a 1024-channel free-space sorting demonstrator,” Appl. Opt. 36, 9243-9252 (1997). [CrossRef]
  20. C. P. Barrett, P. Blair, G. S. Buller, D. T. Neilson, B. Robertson, E. C. Smith, M. R. Taghizadeh, and A. C. Walker, “Components for the implementation of free-space optical crossbars,” Appl. Opt. 35, 6934-6944 (1996). [CrossRef]
  21. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32, 2266-2268 (2007). [CrossRef]
  22. N. Takeuchi, H. Baba, K. Sakurai, and T. Ueno, “Diode-laser random-modulation cw lidar,” Appl. Opt. 25, 63-67 (1986). [CrossRef]
  23. N. Takeuchi, N. Sugimoto, H. Baba, and K. Sakurai, “Random modulation cw lidar,” Appl. Opt. 22, 1382-1386 (1983). [CrossRef]
  24. P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16, 13685-13698 (2008). [CrossRef]
  25. A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: A moderate resolution model for LOWTRAN 7,” Technical Note GL-TR-89-0122, available from Geophysics Laboratory/OPE, Air Force Systems Command, Hanscom AFB, Mass., 1989.
  26. A. M. Wallace, R. C. W. Sung, G. S. Buller, R. D. Harkins, R. E. Warburton, and R. A. Lamb, “Detecting and characterising returns in a pulsed ladar system,” IEE Proc. Vision Image Signal Process. 153, 160-172 (2006). [CrossRef]
  27. S. Hernandez-Marin, A. M. Wallace, and G. J. Gibson, “Multilayered 3D LiDAR image construction using spatial models in a Bayesian framework,” IEEE Trans. Pattern Anal. Mach. Intell. 30, 1028-1040 (2008). [CrossRef]
  28. P. J. Green, “Reversible jump Markov chain Monte Carlo computation and Bayesian model determination,” Biometrika 82, 711-732 (1995). [CrossRef]
  29. W. P. Cole, M. A. Marciniak, and M. B. Haeri, “Atmospheric-turbulence-effects correction factors for the laser range equation,” Opt. Eng. 47, 126001 (2008). [CrossRef]
  30. M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 852-862 (2007). [CrossRef]
  31. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett. 89, 031109 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited