OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 32 — Nov. 10, 2009
  • pp: 6264–6270

Optical current sensor immune to reflection phase shift based on graded-index magneto-optical glass

Meirong Wang, Jianlin Zhao, Sheng Liu, Fei Liu, Xun Wan, and Peng Zhang  »View Author Affiliations

Applied Optics, Vol. 48, Issue 32, pp. 6264-6270 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (797 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new design of bulk glass optical current sensor immune to reflection phase shift, in which an annular graded-index magneto-optical glass with a small prism is used as a sensing head, and the inner and outer layers of the glass possess gradient refractive indices, while the center layer is uniform. Our theoretical analyses show that under certain conditions the light beam will no longer reach the interface between the magneto-optical glass and air during the propagation in the sensing head. Therefore the reflection phase shift could be avoided essentially, resulting in dramatic enhancement of the sensitivity. The influences of the geometrical parameters on the beam traces and the effective range of the initial angle are specified by numerical simulations.

© 2009 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.2240) Optical devices : Faraday effect

ToC Category:
Fiber Optic Sensors

Original Manuscript: July 2, 2009
Revised Manuscript: September 21, 2009
Manuscript Accepted: October 11, 2009
Published: November 5, 2009

Meirong Wang, Jianlin Zhao, Sheng Liu, Fei Liu, Xun Wan, and Peng Zhang, "Optical current sensor immune to reflection phase shift based on graded-index magneto-optical glass," Appl. Opt. 48, 6264-6270 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, and D. A. Jackson, “Recent process in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097-3111 (1995). [CrossRef]
  2. C. M. M. Van den Temple, “Model of a new temperature-compensated optical current sensor using Bi12SiO20,” Appl. Opt. 32, 4869-4874 (1993). [CrossRef]
  3. C. S. Li and T. Yoshino, “Simultaneous measurement of current and voltage by use of bismuth gemanate crystal,” Appl. Opt. 41, 5391-5397 (2002). [CrossRef] [PubMed]
  4. B. Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol. 9, 57-79 (2003). [CrossRef]
  5. Z. P. Wang, Z. J. Huang, C. Kang, Y. H. Luo, A. W. Palmer, and K. T. V. Grattan, “Effects of reflection-induced retardance on the immunity of bulk optic-material current sensors,” Appl. Opt. 37, 7293-7297 (1998). [CrossRef]
  6. H. Katsukawa, H. Ishikawa, H. Okajima, and T. W. Cease, “Development of an optical current transducer with a bulk type Faraday sensor for metering,” IEEE Trans. Power Deliv. 11, 702-707 (1996). [CrossRef]
  7. Z. P. Wang, C. Kang, Z. J. Huang, W. M. Sun, and S. L. Ruan, “General analysis on the effect of reflection-induced retardance upon the sensitivity of bulk glass current sensors,” Elec. Power Syst. Res. 58, 205-208 (2001). [CrossRef]
  8. Y. N. Ning, B. C. B. Chu, and D. A. Jackson, “Miniature Faraday current sensor based on multiple critical angle reflections in a bulk-optic ring,” Opt. Lett. 16, 1996-1998 (1991). [CrossRef] [PubMed]
  9. B. C. B. Chu, Y. N. Ning, and D. A. Jackson, “Faraday current sensor that uses a triangular-shaped bulk-optic sensing element,” Opt. Lett. 17, 1167-1169 (1992). [CrossRef] [PubMed]
  10. Y. N. Ning and D. A. Jackson, “Faraday effect optical current clamp using a bulk-glass sensing element,” Opt. Lett. 18, 835-837 (1993). [CrossRef] [PubMed]
  11. N. E. Fisher, D. A. Jackson, and G. A. Woolsey, “Faraday current sensors and the significance of subtended angles,” Sens. Actuators A, Phys. 63, 119-123 (1997). [CrossRef]
  12. G. D. Li, M. G. Kong, G. R. Jones, and J. W. Spencer, “Sensitivity improvement of an optical current sensor with enhanced Faraday rotation,” J. Lightwave Technol. 15, 2253(1997). [CrossRef]
  13. B. Yi, B. C. B. Chu, K. S. Chiang, and H. S. H. Chung, “New design of optical electric-current sensor for sensitivity improvement,” IEEE Trans. Instrum. Meas. 49, 418-423(2000). [CrossRef]
  14. M. R. Wang, W. M. Zhou, P. Zhang, J. L. Zhao, H. Zhang, and P. F. Wei, “Optical fiber current sensor based on Bi4Ge3O12 crystal with enhanced Faraday rotation by critical angle reflections,” Proc. SPIE 6279, 62791I(2007). [CrossRef]
  15. M. R. Wang, W. M. Zhou, J. L. Zhao, P. F. Wei, and P. Zhang, “Optical fiber current sensor based on BGO crystal with enhanced Faraday rotation by reflections,” Acta Photon. Sin. 37, 1186-1190 (2008) (in Chinese).
  16. T. Sato, G. Takahashi, and Y. Inui, “Method and apparatus for optically measuring a current,” European Patent 0088419 Al (14 September 1983).
  17. B. Yi, A. Cruden, and J. R. McDonald, “A novel bulk-glass optical current transducer having an adjustable multi-ring optical path,” in Proceedings of the IEEE Instrumentation and Measurement Technology Conference (IEEE, 1997), pp. 879-882.
  18. J. Song, P. G. McLaren, D. J. Thomson, and R. L. Middleton, “A clamp-on magneto-optical current transducer for power systems,” in Canadian Conference on Electrical and Computer Engineering (IEEE, 1996), pp. 884-887.
  19. E. N. Li, J. M. K. MacAlpine, Y. B. Liu, and B. Yi, “A novel optical current transducer for power systems,” Elec. Power Syst. Res. 46, 21-25 (1998). [CrossRef]
  20. K. B. Rochford, A. H. Rose, M. N. Deeter, and G. W. Day, “Faraday effect current sensor with improved sensitivity-bandwidth product,” Opt. Lett. 19, 1903-1905(1994). [CrossRef] [PubMed]
  21. T. Yoshino, M. Gojyuki, Y. Takahashi, and T. Shimoyama, “Single glass block Faraday effect current sensor with homogeneous isotropic closed optical circuit,” Appl. Opt. 36, 5566-5573 (1997). [CrossRef] [PubMed]
  22. T. Mitsui, K. Tada, Y. Kuhara, and M. Tatsumi, “Magneto-optical converter utilizing faraday effect,” U.S. patent 4560932 (24 December 1985).
  23. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1986).
  24. P. A. Williams, A. H. Rose, G. W. Day, T. E. Milner, and M. N. Deeter, “Temperature dependence of the Verdet constant in several diamagnetic glasses,” Appl. Opt. 30, 1176-1178 (1991). [CrossRef] [PubMed]
  25. D. T. Moore, “Gradient-index optics: a review,” Appl. Opt. 19, 1035-1038 (1980). [CrossRef] [PubMed]
  26. B. Messerschmidt, B. L. McIntyre, and S. N. Houde-Walter, “Desired concentration-dependent ion exchange for micro-optic lenses,” Appl. Opt. 35, 5670-5676 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited