OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 33 — Nov. 20, 2009
  • pp: 6432–6441

Measurement of buried undercut structures in microfluidic devices by laser fluorescent confocal microscopy

Shiguang Li, Jing Liu, Nam-Trung Nguyen, Zhong Ping Fang, and Soon Fatt Yoon  »View Author Affiliations


Applied Optics, Vol. 48, Issue 33, pp. 6432-6441 (2009)
http://dx.doi.org/10.1364/AO.48.006432


View Full Text Article

Enhanced HTML    Acrobat PDF (998 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Measuring buried, undercut microstructures is a challenging task in metrology. These structures are usually characterized by measuring their cross sections after physically cutting the samples. This method is destructive and the obtained information is incomplete. The distortion due to cutting also affects the measurement accuracy. In this paper, we first apply the laser fluorescent confocal microscopy and intensity differentiation algorithm to obtain the complete three-dimensional profile of the buried, undercut structures in microfluidic devices, which are made by the soft lithography technique and bonded by the oxygen plasma method. The impact of material wettability and the refractive index (n) mismatch among the liquid, samples, cover layer, and objective on the measurement accuracy are experimentally investigated.

© 2009 Optical Society of America

OCIS Codes
(100.5010) Image processing : Pattern recognition
(100.6890) Image processing : Three-dimensional image processing
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2830) Instrumentation, measurement, and metrology : Height measurements
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

ToC Category:
Image Processing

History
Original Manuscript: July 6, 2009
Revised Manuscript: October 12, 2009
Manuscript Accepted: October 21, 2009
Published: November 11, 2009

Citation
Shiguang Li, Jing Liu, Nam-Trung Nguyen, Zhong Ping Fang, and Soon Fatt Yoon, "Measurement of buried undercut structures in microfluidic devices by laser fluorescent confocal microscopy," Appl. Opt. 48, 6432-6441 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-33-6432


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Hashimoto, F. Barany, and S. A. Soper, “Polymerase chain reaction/ligase detection reaction/hybridization assays using flow-through microfluidic devices for the detection of low-abundant DNA point mutations,” Biosens. Bioelectron. 21, 1915-1923 (2006). [CrossRef]
  2. K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2×2 optical switch,” Appl. Phys. Lett. 85, 6119-6121 (2004). [CrossRef]
  3. B. Z. Yang and Q. Lin, “A planar compliance-based self-adaptive microfluid variable resistor,” J. Microelectromech. Syst. 16, 411-19 (2007). [CrossRef]
  4. R. B. Xing, Y. Xuan, Z. Wang, and D. G. Ma, “Undercut structures fabricated by microtransfer printing combined with UV exposure and their applications,” Curr. Appl. Phys. 9, 760-763 (2009). [CrossRef]
  5. R. M. Al-Assaad, L. Tao, and W. C. Hu, “Visible light angular scatterometry for nanolithography,” Proc. SPIE 6518, 651839 (2007). [CrossRef]
  6. Y. F. Chen, Z. Q. Lu, X. D. Wang, Z. Cui, G. H. Pan, Y. Zhou, M. Muñoz, C. Hao, Y. H. Lu, and N. Garcia, “Fabrication of ferromagnetic nanoconstrictions by electron beam lithography using LOR/PMMA bilayer technique,” Microelectron. Eng. 84, 1499-1502 (2007). [CrossRef]
  7. Y. J. Chuang, F. G. Tseng, and W. K. Lin, “Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination,” Microsyst. Technol. 8, 308-313 (2002). [CrossRef]
  8. D. J. D. Carter, A. Pepin, M. R. Schweizer, H. I. Smith, and L. E. Ocola, “Direct measurement of the effect of substrate photoelectrons in x-ray nanolithography,” J. Vac. Sci. Technol. B 15, 2509-2513 (1997). [CrossRef]
  9. J. L. Lenhart, D. Fischer, S. Sambasivan, E. K. Lin, W. L. Wu, D. J. Guerrero, Y. B. Wang, and R. Puligadda, “Understanding deviations in lithographic patterns near interfaces: characterization of bottom anti-reflective coatings (BARC) and the BARC--resist interface,” Appl. Surf. Sci. 253, 4166-4175(2007). [CrossRef]
  10. S. Murakawa and J. P. Mcvittie, “Mechanism of surface charging effects on etching profile defects,” Jpn. J. Appl. Phys. 33, 2184-2188 (1994). [CrossRef]
  11. Y. Rody, P. Martin, C. Couderc, P. Sixt, C. Gardin, K. Lucas, K. Patterson, C. Miramond-Collet, J. Belledent, R. Boone, A. Borjon, and Y. Trouiller, “Evaluation of transparent etch stop layer phase shift mask patterning and comparison with the single trench undercut approach,” Proc. SPIE 5992, 59920R (2005). [CrossRef]
  12. B. Samel, M. K. Chowdhury, and G. Stemme, “The fabrication of microfluidic structures by means of full-wafer adhesive bonding using a poly (dimethylsiloxane) catalyst,” J. Micromech. Microeng. 171710-1714 (2007). [CrossRef]
  13. W. W. Y. Chow, K. F. Lei, G. Shi, W. J. Li, and Q. Huang, “Micro fluidic channel fabrication by PDMS-interface bonding,” Proc. SPIE 5275, 141-148 (2004). [CrossRef]
  14. Y. C. Su and L. W. Lin, “Localized bonding processes for assembly and packaging of polymeric MEMS,” IEEE Trans. Adv. Packag. 28, 635-642 (2005). [CrossRef]
  15. X. L. Zhu, G. Liu, Y. H. Guo, and Y. C. Tian, “Study of PMMA thermal bonding,” Microsyst. Technol. 13, 403-407(2006). [CrossRef]
  16. J. J. Huang, C. Shu, and Y. T. Chew, “Lattice Boltzmann study of droplet motion inside a grooved channel,” Phys. Fluids 21, 022103 (2009). [CrossRef]
  17. M. H. Khadema, M. Shamsa, and S. Hossainpourb, “Numerical simulation of roughness effects on flow and heat transfer in microchannels at slip flow regime,” Int. Commun. Heat Mass Transf. 3669-77 (2009). [CrossRef]
  18. R. Q. Xiong and J. N. Chung, “Investigation of laminar flow in microtubes with random rough surfaces,” Microfluid. Nanofluid. (2009), http://www.springerlink.com/content/g7h746461255g4ng/
  19. S. H. Tan, S. M. S. Murshed, N. T. Nguyen, T. N. Wong, and L. Yobas, “Thermally controlled droplet formation in flow focusing geometry: formation regimes and effect of nanoparticle suspension,” J. Phys. D 41, 16550 (2008).
  20. J. Liu, Y. F. Yap, and N. T. Nguyen, “Behavior of microdroplets in diffuser/nozzle structures,” Microfluid. Nanofluid. 6, 835-846 (2009). [CrossRef]
  21. M. G. Alonso-Amigo and T. Adams, “Development of a plastic microfluidics chip,” IVD Technology, http://www.devicelink.com/ivdt/archive/03/03/003.html (2003).
  22. S. J. Paik, J. Kim, S. Park, S. Kim, C. Koo, S. K. Lee,and D. D. Cho, “A novel micromachining technique to fabricate released GaAs microstructures with a rectangular cross section,” Jpn. J. Appl. Phys. 42, 326-332 (2003). [CrossRef]
  23. J. Li, A. Q. Liu, and Q. X. Zhang, “Tolerance analysis for comb-drive actuator using DRIE fabrication,” Sens. Actuators A, Phys. 125, 494-503 (2006). [CrossRef]
  24. Y. J. Huang, T. L. Chang, and H. P. Chou, “Study of symmetric microstructures for CMOS multilayer residual stress,” Sens. Actuators A, Phys. 150, 237-242 (2009). [CrossRef]
  25. C. C. Kao, J. T. Chu, H. W. Huang, Y. C. Peng, C. C. Yu, Y. L. Hseih, C. F. Lin, H. C. Kuo, and S. C. Wang, “InGaN-based light-emitting diode with undercut side wall,” in 17th Annual Meeting of the IEEE/Lasers and Electro-Optics Society 2004 (IEEE, 2004), paper TuO4.
  26. T. Marschner and C. Stief, “Characterization of 193 nm resist layers by critical dimension-scanning electron microscopy sidewall imaging,” J. Microlith. Microfab. Microsyst. 4, 013007 (2005). [CrossRef]
  27. B. D. Bunday, M. Bishop, J. R. Swyers, and K. Lensing, “Quantitative profile-shape measurement study on a CD-SEM with application to etch-bias control and several different CMOS features,” Proc. SPIE 5038, 383-395 (2003). [CrossRef]
  28. G. F. Lorusso and L. Grella, “Undercut measurement using SEM,” U.S. patent 6,670,612 B1 (30 December 2003).
  29. K. Murayama, S. Gonda, H. Koyanagi, T. Terasawa, and S. Hosaka, “Critical-dimension measurement using multi-angle-scanning method in atomic force microscope,” Jpn. J. Appl. Phys. 45, 5928-5932 (2006). [CrossRef]
  30. K. Murayama, S. Gonda, H. Koyanagi, T. Terasawa, and S. Hosaka, “Side-wall measurement using tilt-scanning method in atomic force microscope,” Jpn. J. Appl. Phys. 45, 5423-5428 (2006). [CrossRef]
  31. N. G. Orji and R. G. Dixson, “Higher order tip effects in traceable CD-AFM-based linewidth measurements,” Meas. Sci. Technol. 18, 448-455 (2007). [CrossRef]
  32. X. P. Qian and J. S. Villarrubia, “General three-dimensional image simulation and surface reconstruction in scanning probe microscopy using a dexel representation,” Ultramicrosc. 108, 29-42 (2007). [CrossRef]
  33. X. P. Qian, J. Villarrubia, F. L. Tian, and R. Dixson, “Image simulation and surface reconstruction of undercut features in atomic force microscopy,” Proc. SPIE 6518, 651811 (2007). [CrossRef]
  34. J. Opsa, H. Y. Chu, Y. X. Wen, Y. C. Chang, and G. W. Li, “Fundamental solutions for real-time optical CD metrology,” Proc. SPIE 4689, 163-176 (2002). [CrossRef]
  35. R. Subramanian, B. Singh, and K. A. Phan, “Using scatterometry to detect and control undercut for ARC with developable BARCs,” U.S. patent 6,972,201 B1 (6 December 2005).
  36. J. Lee, P. Im, Y. Park, and J. Kim, “Welding bead and chamfer inspection by means of laser vision,” Proc. SPIE 4190, 41-50(2001). [CrossRef]
  37. A. W. Williams and N. J. Wood, “Photothermal imaging of damage and undercutting to gold-coated Kapton samples exposed to atomic oxygen,” Opt. Laser Technol. 28, 469-476(1996). [CrossRef]
  38. D. Nyyssonen and Chris P. Kirkt, “Optical microscope imaging of lines patterned in thick layers with variable edge geometry: theory,” J. Opt. Soc. Am. A 5, 1270-1280 (1988). [CrossRef]
  39. J. W. Liu and G. K. Fedder, “Silicon undercut characterization in a CMOS-MEM process,” in International Solid-State Sensors, Actuators and Microsystems Conference, 2007/Transducers 2007 (IEEE, 2007), pp. 505-508.
  40. C. Kaiser, Y. Levy, T. Tiedje, J. F. Young, and I. Kelson, “Determining the profile of textured membranes by the alpha particle energy loss method,” Appl. Phys. Lett. 80, 2607-2609(2002). [CrossRef]
  41. K. Legacy, “Industrial CT scanning speeds mold qualification,” Plast. Technol. (2008), http://www.ptonline.com/articles/200809fa2.html.
  42. I. J. Stares, C. Duffill, J. A. Ogilvy, and C. B. Scruby, “On-line weld pool monitoring and defect detection using ultrasonics,” NDT Int. 23, 195-200 (1990). [CrossRef]
  43. M. H. Lu, “Imaging thin film structures by scanning acoustic microscopy,” U.S. patent application 20080022774 A1 (31 January 2008).
  44. F. Guilak, “Volume and surface area measurement of viable chondrocytes in situ using geometric modelling of serial confocal sections,” J. Microsc. 173, 245-256 (1994).
  45. “LSM 510 and LSM 510 META Laser Scanning Microscopes,” Operating Manual (Carl Zeiss, 2002).
  46. S. G. Li, Z. G. Xu, I. Reading, S. F. Yoon, Z. P. Fang, and J. H. Zhao, “ Three dimensional sidewall measurements by laser fluorescent confocal microscopy,” Opt. Express 16, 4001-4014 (2008). [CrossRef]
  47. http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm.
  48. G. J. Yang and T. S. Huang, “The effect of median filtering on edge location estimation,” Comput. Graph. Image Process. 15, 224-245 (1981). [CrossRef]
  49. L. C. Kuypers, W. F. Decraemer, J. J. J. Dirckx, and J.-P. Timmermans, “A procedure to determine the correct thickness of an object with confocal microscopy in case of refractive index mismatch,” J. Microsc. 218, 68-78 (2005). [CrossRef]
  50. D. Bucher, M. Scholz, M. Stetter, K. Obermayer, and H.-J. Pflüger, “Correction methods for three-dimensional reconstructions from confocal images. I. Tissue shrinking and axial scaling,” J. Neurosci. Methods 100, 135-143 (2000). [CrossRef]
  51. A. Egner, M. Schrader, and S. W. Hell, “Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton and 4Pi-microscopy,” Opt. Commun. 153, 211-217 (1998). [CrossRef]
  52. H. J. Van Elburg, L. C. Kuypers, W. F. Decraemer, and J. J. J. Dirckx, “Improved correction of axial geometrical distortion in index-mismatched fluorescent confocal microscopic images using high-aperture objective lenses,” J. Microsc. 228, 45-54 (2007). [CrossRef]
  53. A. Diaspro, F. Federici, and M. Robello, “Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy,” Appl. Opt. 41, 685-690 (2002). [CrossRef]
  54. S. G. Li, T. Thorsen, Z. G. Xu, Z. P. Fang, J. H. Zhao, and S. F. Yoon, “Microvalve thickness and topography measurements in microfluidic devices by white light confocal microscopy,” Appl. Opt. 48, 5088-5094 (2009). [CrossRef]
  55. M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J Biomed. Opt. 6, 266-272 (2001). [CrossRef]
  56. O. Haeberlé, M. Ammar, H. Furukawa, K. Tenjimbayashi, and P. Török, “Point spread function of optical microscopes imaging through stratified media,” Opt. Express 11, 2964-2969(2003). [CrossRef]
  57. H. Jacobsen and S. W. Hell, “Effect of the specimen refractive index on the imaging of a confocal microscope employing high aperture oil immersion lenses,” Bioimaging 3, 39-47 (1995). [CrossRef]
  58. P. Török, “Focusing of electromagnetic waves through a dielectric interface by lenses of finite Fresnel number,” J. Opt. Soc. Am. A 15, 3009-3015 (1998). [CrossRef]
  59. http://en.wikipedia.org/wiki/Wetting.
  60. http://en.wikipedia.org/wiki/Dimethyl_sulfoxide.
  61. A. Marmur, “Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?,” Langmuir 19, 8343-8348 (2003). [CrossRef]
  62. S.-K. Chae, C.-H. Lee, S. H. Lee, T.-S. Kima, and J. Y. Kang, “Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase,” Lab Chip 9, 1957-1961(2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited