OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 33 — Nov. 20, 2009
  • pp: 6458–6465

Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal

Sanjay K. Mishra, Rahul Bhatt, Devendra Mohan, Arun Kumar Gupta, and Anurag Sharma  »View Author Affiliations

Applied Optics, Vol. 48, Issue 33, pp. 6458-6465 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1635 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The process of Zernike mode detection with a Shack–Hartmann wavefront sensor is computationally extensive. A holographic modal wavefront sensor has therefore evolved to process the data optically by use of the concept of equal and opposite phase bias. Recently, a multiplexed computer-generated hologram (CGH) technique was developed in which the output is in the form of bright dots that specify the presence and strength of a specific Zernike mode. We propose a wavefront sensor using the concept of phase biasing in the latter technique such that the output is a pair of bright dots for each mode to be sensed. A normalized difference signal between the intensities of the two dots is proportional to the amplitude of the sensed Zernike mode. In our method the number of holograms to be multiplexed is decreased, thereby reducing the modal cross talk significantly. We validated the proposed method through simulation studies for several cases. The simulation results demonstrate simultaneous wavefront detection of lower-order Zernike modes with a resolution better than λ / 50 for the wide measurement range of ± 3.5 λ with much reduced cross talk at high speed.

© 2009 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(070.5040) Fourier optics and signal processing : Phase conjugation
(090.1970) Holography : Diffractive optics
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(350.1260) Other areas of optics : Astronomical optics

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: November 12, 2008
Revised Manuscript: August 7, 2009
Manuscript Accepted: October 9, 2009
Published: November 11, 2009

Sanjay K. Mishra, Rahul Bhatt, Devendra Mohan, Arun Kumar Gupta, and Anurag Sharma, "Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal," Appl. Opt. 48, 6458-6465 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Geary, Introduction to Wavefront Sensor, Tutorial Text TT-18 (SPIE Press, 1995). [CrossRef]
  2. F. Rigaut, B. L. Ellerbroek, and M. J. Northcot, “Comparison of curvature-based and Shack-Hartmann based adaptive optics for the Gemini telescope,” Appl. Opt. 36, 2856-2868(1997). [CrossRef] [PubMed]
  3. C. Canovas and E. N. Ribak, “Comparison of Hartmann analysis methods,” Appl. Opt. . 46, 1830-1835 (2007). [CrossRef] [PubMed]
  4. F. Ghebremichael, G. P. Andersen, and K. S. Gurley, “Holography-based wavefront sensing,” Appl. Opt. 47, A62-A69 (2008). [CrossRef] [PubMed]
  5. W. Jiang, X. Rao, Z. Yang, and N. Ling, “Applications of Hartmann-Shack wavefront sensors,” Proc. SPIE 6018, 60180N (2005). [CrossRef]
  6. M. A. Vorontsov and G. W. Carhart, “Adaptive phase distortion correction in strong speckle-modulation conditions,” Opt. Lett. 27, 2155-2157 (2002). [CrossRef]
  7. M. A. Vorontsov, V. V. Kolosov, and E. Polnau, “Target-in-the-loop wavefront sensing and control with a Collett-Wolf beacon: speckle average phase conjugation,” Appl. Opt. 48, A13-A29 (2009). [CrossRef]
  8. R. K. Tyson, Principle of Adaptive Optics (Academic, 1998).
  9. S. K. Mishra, D. Meena, D. Mohan, and A. K. Gupta, “FPGA based fast Shack Hartmann wavefront sensor for aircraft vision,” in Proceedings of the National Conference on Advances in Sensors for Aerospace Applications (Research Center Imarat, 2007).
  10. K. Chen, Z. Yang, H. Wang, and E. Li, “PSD-based Hartmann-Shack wavefront sensor,” Proc. SPIE 5639, 87-94 (2004). [CrossRef]
  11. J. Lin, J. Tang, and H. Chen, “High speed wavefront sensor based on PSDs,” Proc. SPIE 5639, 95-102 (2004). [CrossRef]
  12. M. A. A. Neil, M. J. Booth, and T. Wilson, “New modal wavefront sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17, 1098-1107 (2000). [CrossRef]
  13. M. A. A. Neil, M. J. Booth, and T. Wilson, “Closed-loop aberration correction by use of a modal Zernike wavefront sensor,” Opt. Lett. 25, 1083-1085 (2000). [CrossRef]
  14. M. J. Booth, “Direct measurement of Zernike aberration modes with a modal wavefront sensor,” Proc. SPIE 5162, 79-90 (2003). [CrossRef]
  15. E. N. Ribak and S. M. Ebstein, “A fast modal wavefront sensor,” Opt. Express 9, 152-157 (2001). [CrossRef] [PubMed]
  16. M. A. Lauterbach, M. Ruckel, and W. Denk, “Light-efficient, quantum-limited interferometric wavefront estimation by virtual mode sensing,” Opt. Express 14, 3700-3714(2006). [CrossRef] [PubMed]
  17. A. D. Corbett, T. D. Wilkinson, J. J. Zhong, and L. Diaz-Santana, “Designing the holographic modal wavefront sensor for detection of static ocular aberrations,” J. Opt. Soc. Am. A 24, 1266-1275 (2007). [CrossRef]
  18. O. Glazer, E. N. Ribak, and L. Mirkin, “Adaptive optics implementation with a Fourier reconstructor,” Appl. Opt. 46, 574-580 (2007). [CrossRef] [PubMed]
  19. P. Dyrud and G. P. Andersen, “Fast holographic wavefront sensor,” Proc. SPIE 6215, 621501 (2006).
  20. V. A. Soifer, Methods for Computer Design of Diffractive Optical Elements (Wiley, 2002).
  21. R. Bhatt, S. K. Mishra, D. Mohan, and A. K. Gupta, “Direct amplitude detection of Zernike modes by computer generated holographic wavefront sensor: modeling and simulation,” Opt. Lasers Eng. 46, 428-439 (2008). [CrossRef]
  22. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  23. J. A. Davis, K. O. Valadez, and D. M. Cottrell, “Encoding amplitude and phase information onto a binary phase-only spatial light modulator,” Appl. Opt. 42, 2003-2008(2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited