OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 34 — Dec. 1, 2009
  • pp: 6553–6557

Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer

Rosa Fuentes, Elena Fernández, Celia García, Augusto Beléndez, and Inmaculada Pascual  »View Author Affiliations


Applied Optics, Vol. 48, Issue 34, pp. 6553-6557 (2009)
http://dx.doi.org/10.1364/AO.48.006553


View Full Text Article

Enhanced HTML    Acrobat PDF (347 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-spatial-frequency fringes associated with reflection holographic optical elements are difficult to obtain with currently available recording materials. In this work, holographic reflection gratings were stored in a polyvinyl alcohol/acrylamide photopolymer. This material is formed of acrylamide photo polymer, which is considered interesting material for optical storage applications such as holographic memories. The experimental procedure for examining the high-spatial-frequency response of this material is explained, and the experimental results obtained are presented. With the aim of obtaining the best results, the performance of different material compositions is compared.

© 2009 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(090.0090) Holography : Holography
(090.7330) Holography : Volume gratings
(160.5470) Materials : Polymers

ToC Category:
Holography

History
Original Manuscript: July 30, 2009
Revised Manuscript: October 26, 2009
Manuscript Accepted: October 30, 2009
Published: November 20, 2009

Citation
Rosa Fuentes, Elena Fernández, Celia García, Augusto Beléndez, and Inmaculada Pascual, "Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer," Appl. Opt. 48, 6553-6557 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-34-6553


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996). [CrossRef]
  2. M. Schnoes, B. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, “Holographic data storage media for practical systems,” Proc. SPIE 5005, 29-37 (2003). [CrossRef]
  3. R. R. Mcleod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44, 3197-3207 (2005). [CrossRef]
  4. H. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).
  5. E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45, 7661-7666 (2006). [CrossRef]
  6. E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368-5373 (2007). [CrossRef]
  7. E. Fernández, M. Ortuño, S. Gallego, A. Márquez, C. García, A. Beléndez, and I. Pascual, “Multiplexed holographic data page storage on a PVA/acrylamide photopolymer memory,” Appl. Opt. 47, 4448-4456 (2008). [CrossRef]
  8. J. M. Kim, B. S. Choi, Y. S. Choi, H. I. Bjelkhagen, and N. J. Phillips, “Holographic optical elements recorded in silver halide sensitized gelatin emulsions. Part 2. Reflection holographic optical elements,” Appl. Opt. 41, 1522-1533(2002). [CrossRef]
  9. S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, “High-efficiency volume holograms recording on acrylamide and N,N'methylene-bis-acrylamide photopolymer with pulsed laser,” J. Mod. Opt. 52, 1575-1584 (2005). [CrossRef]
  10. S. Gallego, M. Ortuno, C. Neipp, A. Marquez, A. Belendez, and I. Pascual, “Characterization of polyvinyl alcohol/acrylamide holographic memories with a first-harmonic diffusion model,” Appl. Opt. 44, 6205-6210 (2005). [CrossRef]
  11. K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003). [CrossRef]
  12. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896-898 (1996). [CrossRef]
  13. M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003). [CrossRef]
  14. H. Yao, M. Huang, Z. Chen, L. Hou, and F. Gan, “Optimization of two-monomer-based photopolymer used for holographic recording,” Mater. Lett. 56, 3-8 (2002). [CrossRef]
  15. R. Jallapuram, I. Naydenova, R. Howard, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for microholographic data storage,” Opt. Mater. 28, 1329-1333(2006). [CrossRef]
  16. I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer,” Appl. Phys. Lett. 92, 031109 (2008). [CrossRef]
  17. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008). [CrossRef]
  18. A. Beléndez, M. Ortuño, S. Gallego, T. Meléndez, C. Neipp, and I. Pascual, “Determinación de las constantes ópticas y el espesor de materiales holográficos,” Bol. Soc. Esp. Ceram. V. 43, 457-460 (2004).
  19. P. Hariharan, Optical Holography Principles, Techniques and Applications (Cambridge U. Press, 1996).
  20. L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited