OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 34 — Dec. 1, 2009
  • pp: 6583–6593

Design of a micro-opto-electro-mechanical-system-based near-infrared hyperspectral imager

Thomas Egloff, Jens Knobbe, Stefan Sinzinger, and Heinrich Grüger  »View Author Affiliations


Applied Optics, Vol. 48, Issue 34, pp. 6583-6593 (2009)
http://dx.doi.org/10.1364/AO.48.006583


View Full Text Article

Enhanced HTML    Acrobat PDF (1635 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the development of an imaging spectrometer for the near infrared (NIR) using a micro- opto-electromechanical system. A diffraction grating has been etched into the surface of a micro mechanical scanning mirror made of silicon and is used to scan the object space and to disperse the NIR radiation simultaneously. Beginning with the specific requirements of NIR hyperspectral imaging, a detailed analysis of the system approach resulting in an all-reflective optical design for the hyperspectral imager is presented. The investigation includes a thorough consideration of spectral and spatial distortion occurring by scanning the scene with a grating. Minimization of these aberrations leads to an improved spectrometer design.

© 2009 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(230.4040) Optical devices : Mirrors
(300.6390) Spectroscopy : Spectroscopy, molecular
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Imaging Systems

History
Original Manuscript: August 7, 2009
Revised Manuscript: October 30, 2009
Manuscript Accepted: November 2, 2009
Published: November 23, 2009

Citation
Thomas Egloff, Jens Knobbe, Stefan Sinzinger, and Heinrich Grüger, "Design of a micro-opto-electro-mechanical-system-based near-infrared hyperspectral imager," Appl. Opt. 48, 6583-6593 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-34-6583


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. W. Siesler, Near-Infrared Spectroscopy (Wiley-VCH2002).
  2. G. Tranter, J. Holmes, and J. Lindon, Encyclopedia of Spectroscopy and Spectrometry (Elsevier2000), Vols. 1-3.
  3. W. Kessler, Multivariate Data Analysis (Wiley-VCH2007).
  4. G. Reich, “Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications,” Advanced Drug Delivery Reviews, Vol. 57 of Science Direct (Elsevier2005), pp. 1109-1143.
  5. R. G. Sellar, G. D. Boreman, and L. E. Kirkland, “Comparison of signal collection abilities of different classes of imaging spectrometers,” Proc. SPIE 4816, 389-396 (2002). [CrossRef]
  6. D. E. Rockey, “High resolution imaging spectrometer (HIRIS)--a major advance in imaging spectrometry,” Proc. SPIE 1298, 93-104 (1990). [CrossRef]
  7. A. R. Harvey, J. Beale, A. H. Greenaway, T. J. Hanlon, and J. Williams, “Technology options for imaging spectrometry,” Proc. SPIE 4132, 13-24 (2000). [CrossRef]
  8. L. W. Schumann and T. S. Lomheim, “Infrared hyperspectral imaging Fourier transform and dispersive spectrometers: comparison of signal-to-noise based performance,” Proc. SPIE 4480, 1-14 (2002). [CrossRef]
  9. E. Ansbro, “A new wide field spectrograph,” Proc. SPIE 5492, 1290-1294 (2004). [CrossRef]
  10. C. Feng and A. Ahmad, “Design and modeling of a low-f-number wide-field of view imaging spectrometer,” Proc. SPIE 2819, 118-126 (1996). [CrossRef]
  11. P. Mouroulis, R. O. Green, and T. G. Chrien, “Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information,” Appl. Opt. 39, 2210-2220 (2000). [CrossRef]
  12. P. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, “Optical design of a compact imaging spectrometer for planetary mineralogy,” Opt. Eng. 46, 063001 (2007). [CrossRef]
  13. A. Rogalski, “Optical detectors for focal plane arrays,” Opto-Electron. Rev. 12, 221-245 (2004).
  14. R. N. Jorgensen, The VTTVIS Line Imaging Spectrometer--Principles, Error Sources, and Calibration (Riso National Laboratory, 2002).
  15. G. Polder, G. W. A. M. van der Heijden, L. C. P. Keizer, and I. T. Young, “Calibration and characterisation of imaging spectrographs,” J. Near Infrared Spectrosc. 11, 193-210 (2003). [CrossRef]
  16. P. Mouroulis, “Low-distortion imaging spectrometer designs utilizing convex gratings,” Proc. SPIE 3482, 594-601 (1998). [CrossRef]
  17. F. Dell'Endice, J. Nieke, D. Schläpfer, and K. I. Itten, “Scene-based method for spatial misregistration detection in hyperspectral imagery,” Appl. Opt. 46, 2803-2815 (2007). [CrossRef]
  18. C. P. Warren, M. Friend, A. Velasco, J. Hinrichs, C. Carleton, M. Duncan, and J. Neumann, “Miniaturization of a VNIR hyperspectral imager,” Proc. SPIE 6302, 594-601 (2006).
  19. F. Blechinger, B. Harnisch, and B. Kunkel, “Optical concepts for high resolution imaging spectrometers,” Proc. SPIE 2480, 165-179 (1995). [CrossRef]
  20. J. E. Harvey and C. L. Vernold, “Description of diffraction grating behavior in direction cosine space,” Appl. Opt. 39, 8158-8160 (1998).
  21. J. E. Harvey, D. Bogunovic, and A. Krywonos, “Aberrations of diffracted wave fields,” Appl. Opt. 42, 1167-1174 (2003). [CrossRef]
  22. R. O. Green, “Calibration requirements for Earth-looking imaging spectrometers in the solar-reflected spectrum,” Appl. Opt. 37, 683-690 (1998). [CrossRef]
  23. H. Gross, Handbook of Optical Systems, Vol. 1 of Fundamentals of Technical Optics (Wiley-VCH, 2005).
  24. D. Schläpfer, J. Nieke, and K. I. Itten, “Spatial PSF nonuniformity effects in airborne pushbroom imaging spectrometry data,” IEEE Trans. Geosci. Remote Sens. 45, 458-468(2007). [CrossRef]
  25. H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kück, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE J. Sel. Top. Quantum Electron. 6, 715-722 (2000). [CrossRef]
  26. H. Schenk, Ein neuartiger Mikroaktor zur ein- und zweidimensionalen Ablenkung von Licht, Ph.D. dissertation (Gerhard-Mercator-Universität-Gesamthochschule Duisburg, 2000).
  27. F. Zimmer, H. Grüger, A. Heberer, A. Wolter, and H. Schenk, “Development of a NIR micro spectrometer based on a MOEMS scanning grating,” Proc. SPIE 5455, 9-18 (2004). [CrossRef]
  28. W. L. Wolfe, Optical Engineer's Desk Reference (Optical Society of America, 2003).
  29. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon1980).
  30. N. C. Das, “Aberration properties of a Czerny-Turner spectrograph using plane-holographic diffraction grating,” Appl. Opt. 30, 3589-3597 (1991). [CrossRef]
  31. A. Kutter, Der Schiefspiegler (Verlag F. Weichardt, 1953).
  32. H. Gross, F. Blechinger, and B. Achtner, Handbook of Optical Systems, Volume 4, Survey of Optical Instruments (Wiley-VCH2008).
  33. D. R. Hearn, “Characterization of instrument spectral resolution by the spectral modulation transfer function,” Proc. SPIE 3439, 400-407 (1998). [CrossRef]
  34. R. E. Fischer and B. Tadic-Galeb, Optical System Design (McGraw-Hill, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited