OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 34 — Dec. 1, 2009
  • pp: H1–H8

Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths

Daniel Carl, Markus Fratz, Marcel Pfeifer, Dominik M. Giel, and Heinrich Höfler  »View Author Affiliations

Applied Optics, Vol. 48, Issue 34, pp. H1-H8 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (626 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel implementation of lensless multiwavelength digital holography with autocalibration of temporal phase shifts and artificial wavelength is presented. The algorithm we used to calculate the phase shifts was previously proposed [ Opt. Lett. 29 183 (2004)] and, to our knowledge, is now used for the first time in lensless holography. Because precise knowledge of the generated artificial wavelength is crucial for absolute measurement accuracy, a simple and efficient method to determine the artificial wavelength directly is presented. The calibration method is based on a simple modification of the experimental setup and needs just one additional image acquisition per wavelength. The results of shape measurement of a metallic test object with a rough surface and steep edges are shown and the measurement accuracy is discussed.

© 2009 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.4220) Holography : Multiplex holography
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(090.1995) Holography : Digital holography
(120.6165) Instrumentation, measurement, and metrology : Speckle interferometry, metrology

Original Manuscript: June 30, 2009
Revised Manuscript: July 27, 2009
Manuscript Accepted: July 28, 2009
Published: August 10, 2009

Daniel Carl, Markus Fratz, Marcel Pfeifer, Dominik M. Giel, and Heinrich Höfler, "Multiwavelength digital holography with autocalibration of phase shifts and artificial wavelengths," Appl. Opt. 48, H1-H8 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Z. Cai, Q. Liu, and X. L. Yang: “Generalized phase-shifting interferometry with arbitrary unknown phase steps for diffraction objects,” Opt. Lett. 29183-185 (2004). [CrossRef]
  2. Y. I. Ostrovsky, M. M. Butusov, and G. V. Ostrovskaya, Interferometry by Holography, Springer Series in Optical Sciences (Springer, 1980).
  3. Y. I. Ostrovsky, V. V. Shchepinov, and V. V. Yakovlev, Holographic Interferometry in Experimental Mechanics, Springer Series in Optical Sciences (Springer, 1991).
  4. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994). [CrossRef]
  5. M.-A. Beeck and W. Hentschel, “Laser metrology--a diagnostic tool in automotive development processes,” Opt. Lasers Eng. 34, 101-120 (2000).
  6. V. P. Shchepinov and V. S. Pisarev, Strain and Stress Analysis by Holographic and Speckle Interferometry (Wiley, 1996).
  7. T. Kreis, Holographic Interferometry: Principles and Methods (Akademie Publishing1996).
  8. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high resolution living-cell analysis,” Appl. Opt. 43, 6536-6544(2004). [CrossRef]
  9. M. Liebling, T. Blu, and M. Unser, “Complex-wave retrieval from a single off-axis hologram,” J. Opt. Soc. Am. A 21, 367-377 (2004). [CrossRef]
  10. C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005). [CrossRef]
  11. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468-470 (2005). [CrossRef]
  12. B. Kemper, D. Carl, A. Höink, G. von Bally, I. Bredebusch, and J. Schnekenburger, “Modular digital holographic microscopy system for marker-free quantitative phase contrast imaging of living cells,” Proc. SPIE 6191, 61910T(2006).
  13. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999). [CrossRef]
  14. M. Kemmler, M. Fratz, D. M. Giel, N. Saum, A. Brandenburg, and C. Hoffmann, “Noninvasive time-dependent cytometry monitoring by digital holography,” J. Biomed. Opt. 12, 064002(2007).
  15. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphotometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361-9373(2005). [CrossRef]
  16. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).
  17. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13, 9361-9373(2005). [CrossRef]
  18. D. C. Ghighlia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley-Interscience, 1998).
  19. M. Takeda and H. Yamamoto, “Fourier-transform speckle profilometry: three-dimensional shape measurements of diffuse objects with large height steps and/or spatially isolated surfaces,” Appl. Opt. 33, 7829-7837 (1994). [CrossRef]
  20. S. Kuwamura and I. Yamaguchi, “Wavelength scanning profilometry for real-time surface shape measurement,” Appl. Opt. 36, 4473-4482 (1997). [CrossRef]
  21. C. Furlong and R. J. Pryputniewicz, “Absolute shape measurements using high-resolution optoelectronic holography methods,” Opt. Eng. 39, 216-223 (2000).
  22. C. Wagner, W. Osten, and S. Seebacher, “Automatic processing of direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 3979-85(2000).
  23. E. A. Barbosa, A. A. V. Filho, M. R. R. Gesualdi, B. G. Curcio, M. Muramatsu, and D. Soga, “Single-exposure, photorefractive holographic surface contouring with multiwavelength diode lasers,” J. Opt. Soc. Am. A 22, 2872-2879(2005). [CrossRef]
  24. D. Parshall and M. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45, 451-459(2006). [CrossRef]
  25. A. Wada, M. Kato, and Y. Ishii, “Large step-height measurements using multiple-wavelength holographic interferometry with tunable laser diodes,” J. Opt. Soc. Am. A 25, 3013-3020 (2008). [CrossRef]
  26. D. Carl, M. Fratz, D. Strohmeier, D. M. Giel, and H. Höfler, “Digital holography with arbitrary temporal phase-shifts and multiple wavelengths for shape measurement of rough sSurfaces,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2008), paper DMC7.
  27. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995). [CrossRef]
  28. R. Jones, “The design and application of a speckle pattern interferometer for total plane strain field measurement,” Opt. Laser Technol. 8215-219(1976). [CrossRef]
  29. T. M. Kreis, M. Adams, and W. P. O. Jueptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224-245(1997).
  30. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233-245 (1999). [CrossRef]
  31. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776-11781 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited