OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 34 — Dec. 1, 2009
  • pp: H120–H136

Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods

Natan T. Shaked, Barak Katz, and Joseph Rosen  »View Author Affiliations

Applied Optics, Vol. 48, Issue 34, pp. H120-H136 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1472 KB) | SpotlightSpotlight on Optics Open Access ISP Components
Browse Datasets: MIDAS Click for help

Full-Text PDF contains links to datasets. See ISP homepage for software requirements and other information.

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Methods of generating multiple viewpoint projection holograms of three-dimensional (3-D) realistic objects illuminated by incoherent white light are reviewed in this paper. Using these methods, it is possible to obtain holograms with a simple digital camera, operating in regular light conditions. Thus, most disadvantages characterizing conventional digital holography, namely the need for a powerful, highly coherent laser and extreme stability of the optical system, are avoided. The proposed holographic processes are composed of two stages. In the first stage, regular intensity-based images of the 3-D scene are captured from multiple points of view by a simple digital camera. In the second stage, the acquired projections are digitally processed to yield the complex digital hologram of the 3-D scene, where no interference is involved in the process. For highly reflecting 3-D objects, the resulting hologram is equivalent to an optical hologram of the objects recorded from the central point of view. We first review various methods to acquire the multiple viewpoint projections. These include the use of a microlens array and a macrolens array, as well as digitally generated projections that are not acquired optically. Next, we show how to digitally process the acquired projections to Fourier, Fresnel, and image holograms. Additionally, to obtain certain advantages over the known types of holograms, the proposed hybrid optical-digital process can yield novel types of holograms such as the modified Fresnel hologram and the protected correlation hologram. The prospective goal of these methods is to facilitate the design of a simple and portable digital holographic camera that can be useful for a variety of practical applications, including 3-D video acquisition and various types of biomedical imaging. We review several of these applications to signify the advantages of multiple viewpoint projection holography.

© 2009 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(100.3010) Image processing : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(090.1995) Holography : Digital holography

Original Manuscript: July 2, 2009
Revised Manuscript: September 2, 2009
Manuscript Accepted: September 2, 2009
Published: October 9, 2009

Virtual Issues
(2009) Advances in Optics and Photonics
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics
Digital Holography and 3-D Imaging: Interactive Science Publishing (2009) Applied Optics
October 8, 2009 Spotlight on Optics

Natan T. Shaked, Barak Katz, and Joseph Rosen, "Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods," Appl. Opt. 48, H120-H136 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Hariharan, Optical Holography, Principles, Techniques and Applications (Cambridge University Press, 1996).
  2. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  3. U. Schnars and W. Juptner, Digital Holography, Digital Hologram Recording, Numerical Reconstruction and Related Techniques (Springer, 2005).
  4. A. W. Lohmann, “Wavefront reconstruction for incoherent objects,” J. Opt. Soc. Am. 55, 1555-1556 (1965). [CrossRef]
  5. G. W. Stroke and R. C. Restrick, “Holography with spatially noncoherent light,” Appl. Phys. Lett. 7, 229-231 (1965). [CrossRef]
  6. H. R. Worthington, “Production of holograms with incoherent illumination,” J. Opt. Soc. Am. 56, 1397-1398 (1966). [CrossRef]
  7. G. Cochran, “New method of making Fresnel transforms with incoherent light,” J. Opt. Soc. Am. 56, 1513-1517 (1966). [CrossRef]
  8. P. J. Peters, “Incoherent holograms with a mercury light source,” Appl. Phys. Lett. 8, 209-210 (1966). [CrossRef]
  9. G. Sirat and D. Psaltis, “Conoscopic holography,” Opt. Lett. 10, 4-6 (1985). [CrossRef]
  10. A. S. Marathay, “Noncoherent-object hologram: its reconstruction and optical processing,” J. Opt. Soc. Am. A 4, 1861-1868(1987). [CrossRef]
  11. T.-C. Poon, K. B. Doh, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995).
  12. G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, “Imaging properties of scanning holographic microscopy,” J. Opt. Soc. Am. A 17, 380-390 (2000). [CrossRef]
  13. B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506-1508 (1997). [CrossRef]
  14. L. Mertz and N. O. Young, “Fresnel transformations of images,” Proceedings of Conference on Optical Instruments and Techniques, K.J.Habell, Ed. (Chapman & Hall, 1962).
  15. J. Rosen and G. Brooker “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32, 912-914 (2007). [CrossRef]
  16. J. Rosen and G. Brooker “Fluorescence incoherent color holography,” Opt. Express 15, 2244-2250 (2007). [CrossRef]
  17. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photon. 2, 190-195 (2008). [CrossRef]
  18. J. Rosen, G. Indebetouw, G. Brooker, and N. T. Shaked, “A review of incoherent digital Fresnel holography,” J. Holography Speckle 5, 124-140 (2009).
  19. T.-C. Poon, “Holography: Scan-free three-dimensional imaging,” Nat. Photon. 2, 131-132 (2008). [CrossRef]
  20. T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15, 2722-2729(1976). [CrossRef]
  21. T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45, 4026-4036 (2006). [CrossRef]
  22. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), pp. 355-363.
  23. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005), Chap. 3.
  24. Y. Li, D. Abookasis, and J. Rosen, “Computer-generated holograms of three-dimensional realistic objects recorded without wave interference,” Appl. Opt. 40, 2864-2870 (2001). [CrossRef]
  25. D. Abookasis and J. Rosen, “Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints,” J. Opt. Soc. Am. A 20, 1537-1545(2003). [CrossRef]
  26. Y. Sando, M. Itoh, and T. Yatagai, “Holographic three-dimensional display synthesized from three-dimensional Fourier spectra of real-existing objects,” Opt. Lett. 28, 2518-2520 (2003). [CrossRef]
  27. Y. Sando, M. Itoh, and T. Yatagai, “Full-color computer-generated holograms using 3-D Fourier spectra,” Opt. Express 12, 6246-6251 (2004). [CrossRef]
  28. D. Abookasis and J. Rosen, “Three types of computer-generated hologram synthesized from multiple angular viewpoints of a three-dimensional scene,” Appl. Opt. 45, 6533-6538 (2006). [CrossRef]
  29. N. T. Shaked, J. Rosen, and A. Stern, “Integral holography: white-light single-shot hologram acquisition,” Opt. Express 15, 5754-5760 (2007). [CrossRef]
  30. B. Lee, S. Jung, and J. H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818-820(2002). [CrossRef]
  31. A. Stern and B. Javidi, “Three dimensional sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591-607 (2006). [CrossRef]
  32. J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express 17, 6320-6334(2009). [CrossRef]
  33. B. Katz, N. T. Shaked, and J. Rosen, “Synthesizing computer generated holograms with reduced number of perspective projections,” Opt. Express 15, 13250-13255(2007). [CrossRef]
  34. D. Scharstein, View Synthesis Using Stereo Vision, Vol. 1583 of Lecture Notes in Computer Science (Springer-Verlag, 1999), Chap. 2.
  35. J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45, 117004:1-7 (2006).
  36. N. T. Shaked, B. Katz, and J. Rosen, “Fluorescence multicolor hologram recorded by using a macrolens array,” Opt. Lett. 33, 1461-1463 (2008). [CrossRef]
  37. N. T. Shaked and J. Rosen, “Modified Fresnel computer-generated hologram directly recorded by multiple-viewpoint projections,” Appl. Opt. 47, D21-D27 (2008). [CrossRef]
  38. N. T. Shaked and J. Rosen, “Multiple-viewpoint projection holograms synthesized by spatially incoherent correlation with broadband functions,” J. Opt. Soc. Am. A 25, 2129-2138(2008). [CrossRef]
  39. D. Abookasis and J. Rosen, “Digital correlation holograms implemented on a joint transform correlator,” Opt. Commun. 225, 31-37 (2003). [CrossRef]
  40. B. Javidi and A. Sergent, “Fully phase encoded key and biometrics for security verification,” Opt. Eng. 36, 935-942(1997).
  41. D. Abookasis, A. Batikoff, H. Famini, and J. Rosen, “Performance comparison of iterative algorithms for generating digital correlation holograms used in optical security systems,” Appl. Opt. 45, 4617-4624 (2006). [CrossRef]
  42. D. C. Youla and H. Webb, “Image restoration by the method of convex projections: part 1--theory,” IEEE Trans. Med. Imaging 1, 81-94 (1982). [CrossRef]
  43. J. R. Fienup, “Phase-retrieval algorithm: a comparison,” Appl. Opt. 21, 2758-2769 (1982). [CrossRef]
  44. H. Stark, Image Recovery: Theory and Application (Academic, 1987), pp. 29-78 and 277-320.
  45. J. Rosen and J. Shamir, “Application of the projection-onto-constraint-sets algorithm for optical pattern recognition,” Opt. Lett. 16, 752-754 (1991). [CrossRef]
  46. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006), Chap. 1.
  47. T. Vo-Dinh, ed., Biomedical Photonics Handbook (CRC Press, 2003), Chap. 3.5.
  48. N. T. Shaked, Y. Yitzhaky, and J. Rosen “Incoherent holographic imaging through thin turbulent media,” Opt. Commun. 282, 1546-1550 (2009). [CrossRef]
  49. T. Vo-Dinh, ed., Biomedical Photonics Handbook (CRC Press, 2003), Chaps. 13 and 16.
  50. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825-840 (1997). [CrossRef]
  51. J. Rosen and D. Abookasis, “Seeing through biological tissues using the fly eye principle,” Opt. Express 11, 3605-3611(2003).
  52. J. Rosen and D. Abookasis, “Noninvasive optical imaging by speckle ensemble,” Opt. Lett. 29, 253-255 (2004). [CrossRef]
  53. J. Rosen and D. Abookasis, “NOISE 2 imaging system: Seeing through scattering tissue by correlation with a point,” Opt. Lett. 29, 253 (2004). [CrossRef]
  54. D. Abookasis and J. Rosen, “Stereoscopic imaging through scattering media,” Opt. Lett. 31, 724-726 (2006). [CrossRef]
  55. I. Moon and B. Javidi, “Three-dimensional visualization of objects in scattering medium by use of computational integral imaging,” Opt. Express 16, 13080-13089 (2008). [CrossRef]
  56. O. Shacham, O. Haik, and Y. Yitzhaky, “Blind restoration of atmospherically degraded images by automatic best step edge detection,” Pattern Recogn. Lett. 28, 2094-2103(2007).
  57. N. T. Shaked, G. Segev, and J. Rosen, “Three-dimensional object recognition using a quasi-correlator invariant to imaging distances,” Opt. Express 16, 17148-17153 (2008). [CrossRef]
  58. R. Bamler and J. Hofer-Alfeis, “Three- and four dimensional filter operations by coherent optics,” Opt. Acta 29, 747-757(1982).
  59. J. Rosen, “Three-dimensional optical Fourier transform and correlation,” Opt. Lett. 22, 964-966 (1997). [CrossRef]
  60. J. Rosen, “Three-dimensional electro-optical correlation,” J. Opt. Soc. Am. A 15, 430-436 (1998). [CrossRef]
  61. J. Rosen, “Three-dimensional joint transform correlator,” Appl. Opt. 37, 7538-7544 (1998). [CrossRef]
  62. Y. Li and J. Rosen, “Three-dimensional pattern recognition with a single two-dimensional synthetic reference function,” Appl. Opt. 39, 1251-1259 (2000). [CrossRef]
  63. Y. Li and J. Rosen, “Three-dimensional correlator with general complex filters,” Appl. Opt. 39, 6561-6572 (2000). [CrossRef]
  64. T.-C. Poon and T. Kim, “Optical image recognition of three dimensional objects,” Appl. Opt. 38, 370-381 (1999). [CrossRef]
  65. J. J. Esteve-Taboada, D. Mas, and J. Garcia, “Three dimensional object recognition by Fourier transform profilometry,” Appl. Opt. 38, 4760-4765 (1999). [CrossRef]
  66. Y. Li and J. Rosen, “Object recognition using three-dimensional optical quasi-correlation,” J. Opt. Soc. Am. A 19, 1755-1762 (2002). [CrossRef]
  67. B. Javidi, R. Ponce-Díaz, and S.-H. Hong, “Three-dimensional recognition of occluded objects by using computational integral imaging,” Opt. Lett. 31, 1106-1108 (2006). [CrossRef]
  68. J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced three-dimensional image correlator using computationally reconstructed integral images,” Opt. Commun. 276, 72-79 (2007). [CrossRef]
  69. D.-H. Shin and H. Yoo, “Scale-variant magnification for computational integral imaging and its application to 3D object correlator,” Opt. Express 16, 8855-8867 (2008). [CrossRef]
  70. Y. Li and J. Rosen, “Scale-invariant recognition of three-dimensional objects using quasi-correlator,” Appl. Opt. 42, 811-819 (2003). [CrossRef]
  71. J.-H. Park, J. Kim, and B. Lee, “Three-dimensional optical correlator using a subimage array,” Opt. Express 13, 5116-5126(2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (14676 KB)     
» Media 2: AVI (8772 KB)     
» Media 3: AVI (8862 KB)     
» Media 4: AVI (7639 KB)     
» Media 5: AVI (14701 KB)     
» Media 6: AVI (12129 KB)     
» Media 7: AVI (14147 KB)     
» Media 8: AVI (11746 KB)     
» Media 9: AVI (14399 KB)     
» Media 10: AVI (13470 KB)     
» Media 11: AVI (7637 KB)     
» Media 12: AVI (9136 KB)     
» Media 13: AVI (10348 KB)     
» Media 14: AVI (9971 KB)     
» Media 15: AVI (7394 KB)     
» Media 16: AVI (8309 KB)     
» Media 17: AVI (9281 KB)     
» Media 18: AVI (8594 KB)     
» Media 19: AVI (4009 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited