OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 34 — Dec. 1, 2009
  • pp: H144–H152

Quantitative imaging of cellular adhesion by total internal reflection holographic microscopy

William M. Ash III, Leo Krzewina, and Myung K. Kim  »View Author Affiliations

Applied Optics, Vol. 48, Issue 34, pp. H144-H152 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1035 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Total internal reflection (TIR) holographic microscopy uses a prism in TIR as a near-field imager to perform quantitative phase microscopy of cell–substrate interfaces. The presence of microscopic organisms, cell–substrate interfaces, adhesions, and tissue structures on the prism’s TIR face causes relative index of refraction and frustrated TIR to modulate the object beam’s evanescent wave phase front. We present quantitative phase images of test specimens such as Amoeba proteus and cells such as SKOV-3 and 3T3 fibroblasts.

© 2009 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(170.0180) Medical optics and biotechnology : Microscopy
(170.1530) Medical optics and biotechnology : Cell analysis
(260.6970) Physical optics : Total internal reflection
(090.1995) Holography : Digital holography
(180.4243) Microscopy : Near-field microscopy

Original Manuscript: July 2, 2009
Revised Manuscript: October 18, 2009
Manuscript Accepted: October 21, 2009
Published: November 3, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

William M. Ash III, Leo Krzewina, and Myung K. Kim, "Quantitative imaging of cellular adhesion by total internal reflection holographic microscopy," Appl. Opt. 48, H144-H152 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Bray, Cell Movements: from Molecules to Motility, 2nd ed. (Garland, 2001).
  2. D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley-Liss, 2001)
  3. F. Zernike, “How I discovered phase contrast,” Science 121, 345-349 (1955). [CrossRef] [PubMed]
  4. M. Spencer, Fundamentals of Light Microscopy (Cambridge, 1982).
  5. J. James and H. Tanke, Biomedical Light Microscopy (Kluwer Academic,1991). [CrossRef]
  6. S. K. Debnath, M. P. Kothiyal, J. Schmit, and P. Hariharan, “Spectrally resolved white-light phase-shifting interference microscopy for thickness-profile measurements of transparent thin film layers on patterned substrates,” Opt. Express 14, 4662-4667 (2006). [CrossRef] [PubMed]
  7. W. M. Ash and M. K. Kim, “Digital holography of total internal reflection,” Opt. Express 16, 9811-9820 (2008). [CrossRef] [PubMed]
  8. D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145(1981). [CrossRef] [PubMed]
  9. D. Axelrod, N. L. Thompson, and T. P. Burghardt, “Total internal reflection fluorescent microscopy,” J. Microsc. 129, 19-28(1983). [CrossRef] [PubMed]
  10. A. S. G. Curtis, “The mechanism of adhesion of cells to glass--a study by interference reflection microscopy,” J. Cell Biol. 20, 199-215 (1964). [CrossRef] [PubMed]
  11. H. Verschueren, “Interference reflection microscopy in cell biology: methodology and applications,” J. Cell Sci. 75, 279-301 (1985). [PubMed]
  12. U. Schnars and W. Jueptner, Digital Holography (Springer-Verlag, 2005).
  13. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001). [CrossRef] [PubMed]
  14. K. J. Chalut, W. J. Brown, and A. Wax, “Quantitative phase microscopy with asynchronous digital holography,” Opt. Express 15, 3047-3052 (2007). [CrossRef] [PubMed]
  15. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43, 6536-6544(2004). [CrossRef]
  16. K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-domain digital holographic optical coherence imaging of living tissue,” Appl. Opt. 46, 4999-5008 (2007). [CrossRef] [PubMed]
  17. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with sub wavelength accuracy,” Opt. Lett. 30, 468-470 (2005). [CrossRef] [PubMed]
  18. M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Express 7, 305-310 (2000). [CrossRef] [PubMed]
  19. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic 3D imaging using the angular spectrum method,” Opt. Lett. 30, 2092-2094 (2005). [CrossRef] [PubMed]
  20. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141-1143 (2003). [CrossRef] [PubMed]
  21. C. J. Mann, L. Yu, C. M. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005). [CrossRef] [PubMed]
  22. C. Mann, L. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5, 21 (2006). [CrossRef] [PubMed]
  23. S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, “Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes,” Opt Express 13, 9935-9940 (2005). [CrossRef] [PubMed]
  24. S. J. Jeong and C. K. Hong, “Pixel-size-maintained image reconstruction of digital holograms on arbitrarily tilted planes by the angular spectrum method,” Appl. Opt. 47, 3064-3071(2008). [CrossRef] [PubMed]
  25. A. Grebecki, “Two-directional pattern of movements on the cell surface of Amoeba proteus,” J. Cell Sci. 83, 23-35 (1986). [PubMed]
  26. D. C. Lovelady, J. Friedman, S. Patel, D. A. Rabson, and C.-M. Lo, “Detecting effects of low levels of cytochalasin B in 3T3 fibroblast cultures by analysis of electrical noise obtained from cellular micromotion,” Biosens. Bioelectron. 24, 2250-2254 (2009). [CrossRef]
  27. D. C. Lovelady, T. C. Richmond, A. N. Maggi, C.-M. Lo, and D. A. Rabson, “Distinguishing cancerous from noncancerous cells through analysis of electrical noise,” Phys. Rev. E 76, 041908 (2007). [CrossRef]
  28. K. Matsushima, H. Schimmel, and F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20, 1755-1762 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited