OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 34 — Dec. 1, 2009
  • pp: H160–H167

Parallel optical-path-length-shifting digital holography

Yasuhiro Awatsuji, Takamasa Koyama, Tatsuki Tahara, Kenichi Ito, Yuki Shimozato, Atsushi Kaneko, Kenzo Nishio, Shogo Ura, Toshihiro Kubota, and Osamu Matoba  »View Author Affiliations


Applied Optics, Vol. 48, Issue 34, pp. H160-H167 (2009)
http://dx.doi.org/10.1364/AO.48.00H160


View Full Text Article

Enhanced HTML    Acrobat PDF (960 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The authors propose an optical-path-length-shifting digital holography as a technique capable of single-shot recording of three-dimensional information of objects. With a single image sensor, the proposed technique can simultaneously record all of the holograms required for the in-line digital holography that reconstruct the image of an object from two intensity measurements at different planes. The technique can be optically implemented by using an optical-path-length-shifting array device located in the common path of the reference and object waves. The array device has periodic structure of two-step optical-path difference. The configuration of the array device of the proposed technique is simpler than the phase-shifting array device required for parallel phase-shifting digital holographies. Therefore, the optical system of the proposed technique is more suitable for the realization of a single-shot in-line digital holography system that removes the conjugate image from the reconstructed image. The authors conducted both a numerical simulation and a preliminary experiment of the proposed technique. The reconstructed images were quantitatively evaluated by using root mean squared error. In comparison to single-shot digital holography using the Fresnel transform alone, with the proposed technique the root mean squared errors of the technique were reduced to less than 1 / 6 in amplitude and 1 / 3 in phase. Also the results of the simulation and experiment agreed well with the images of an object. Thus the effectiveness of the proposed technique is verified.

© 2009 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.1760) Holography : Computer holography
(090.2880) Holography : Holographic interferometry
(100.3010) Image processing : Image reconstruction techniques
(090.1995) Holography : Digital holography

History
Original Manuscript: July 1, 2009
Revised Manuscript: September 29, 2009
Manuscript Accepted: October 23, 2009
Published: November 4, 2009

Citation
Yasuhiro Awatsuji, Takamasa Koyama, Tatsuki Tahara, Kenichi Ito, Yuki Shimozato, Atsushi Kaneko, Kenzo Nishio, Shogo Ura, Toshihiro Kubota, and Osamu Matoba, "Parallel optical-path-length-shifting digital holography," Appl. Opt. 48, H160-H167 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-34-H160


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967). [CrossRef]
  2. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys. 17, 333-334 (1972).
  3. L. Onural and P. D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124-1132 (1987).
  4. T. -C. Poon, “Recent progress in optical scanning holography,” J. Holography Speckle 1, 6-25 (2004). [CrossRef]
  5. Digital Holography and Three-Dimensional Display: Principles and Applications, T. -C. Poon, ed. (Springer, 2006). [CrossRef]
  6. G. Pedrini, P. Froning, H. Fessler, and H. J. Tiziani, “In-line digital holographic interferometry,” Appl. Opt. 37, 6262-6269(1998). [CrossRef]
  7. Y. Morimoto, T. Nomura, M. Fujigaki, S. Yoneyama, and I. Takahashi, “Deformation measurement by phase-shifting digital holography,” Exp. Mech. 45, 65-70 (2005). [CrossRef]
  8. N. Demoli and I. Demoli, “Dynamic modal characterization of musical instruments using digital holography,” Opt. Express 13, 4812-4817 (2005). [CrossRef] [PubMed]
  9. I. Yamaguchi, T. Ida, and M. Yokota, “Measurement of surface shape and position by phase-shifting digital holography,” Strain 44, 349-356 (2008). [CrossRef]
  10. C. Quan, C. J. Tay, and W. Chen, “Determination of displacement derivative in digital holographic interferometry,” Opt. Commun. 282, 809-815 (2009). [CrossRef]
  11. S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32, 567-574(2000). [CrossRef]
  12. J. Soria and C. Atkinson, “Digital holographic particle image velocimetry: Towards 3C-3D digital holographic fluid velocity vector field measurement--tomographic digital holographic PIV (Tomo-HPIV),” Meas. Sci. Technol. 19, 074002(2008). [CrossRef]
  13. S. Kim and S. J. Lee, “Measurement of Dean flow in a curved micro-tube using micro digital holographic particle tracking velocimetry,” Exp. Fluids 46, 255-264 (2009). [CrossRef]
  14. V. R. Singh, G. Hegde, and A. Asundi, “Particle field imaging using digital in-line holography,” Curr. Sci. 96, 391-397(2009).
  15. T.-C. Poon, K. Doh, B. Schilling, M. Wu, K. Shinoda, and Y. Suzuki, “Three-dimensional microscopy by optical scanning holography,” Opt. Eng. 34, 1338-1344 (1995). [CrossRef]
  16. D. Parshall and M. K. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45, 451-459 (2006). [CrossRef] [PubMed]
  17. L. Denis, T. Fournel, C. Fournier, and D. Jeulin, “Reconstruction of the rose of directions from a digital microhologram of fibres,” J. Microsc. 225, 283-292 (2007). [CrossRef] [PubMed]
  18. K. J. Chalut, W. J. Brown, and A. Wax, “Quantitative phase microscopy with asynchronous digital holography,” Opt. Express 15, 3047-3052 (2007). [CrossRef] [PubMed]
  19. W. K. Jeon and K. H. Chung, “Phase-contrast microscopy by in-line phase-shifting digital holography: shape measurement of a titanium pattern with nanometer axial resolution,” Opt. Eng. 46, 040506 (2007). [CrossRef]
  20. J. Lobera and J. M. Coupland, “Contrast enhancing techniques in digital holographic microscopy,” Meas. Sci. Technol. 19, 025501 (2008). [CrossRef]
  21. V. Mico, Z. Zalevsky, and J. Garcia, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273-4281 (2008). [CrossRef]
  22. J. Sheng, E. Malkiel, and J. Katz, “Using digital holographic microscopy for simultaneous measurements of 3D near wall velocity and wall shear stress in a turbulent boundary layer,” Exp. Fluids 45, 1023-1035 (2008). [CrossRef]
  23. I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27, 1782-1790 (2008). [CrossRef] [PubMed]
  24. H. Janeckova, P. Vesely, and R. Chmelik, “Application of a transmission low-coherence digital holographic microscope in cancer cell biology,” Anticancer Res. 28, 3329-3330 (2008).
  25. F. Dubois and P. Grosfils, “Dark-field digital holographic microscopy to investigate objects that are nanosized or smaller than the optical resolution,” Opt. Lett. 33, 2605-2607(2008). [CrossRef] [PubMed]
  26. D. N. Tishko, T. V. Tishko, and V. P. Titar, “Using digital holographic microscopy to study transparent thin films,” J. Opt. Technol. 76, 147-149 (2009). [CrossRef]
  27. Y. Fu, H. J. Shi, and H. Miao, “Vibration measurement of a miniature component by high-speed image-plane digital holographic microscopy,” Appl. Opt. 48, 1990-1997 (2009). [CrossRef] [PubMed]
  28. T. A. Saucedo, F. M. Santoyo. M. De la Torre Ibarra, G. Pedrini, and W. Osten, “Simultaneous two-dimensional endoscopic pulsed digital holography for evaluation of dynamic displacements,” Appl. Opt. 45, 4534-4539 (2006). [CrossRef]
  29. T. A. Saucedo, F. M. Santoyo, M. De la Torre Ibarra, G. Pedrini, and W. Osten, “Endoscopic pulsed digital holography for 3D measurements,” Opt. Express 14, 1468-1475 (2006). [CrossRef] [PubMed]
  30. A. Stadelmaier and J. H. Massig, “Compensation of lens aberrations in digital holography,” Opt. Lett. 25, 1630-1632(2000). [CrossRef]
  31. P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Display Technol. 4, 97-100 (2008). [CrossRef]
  32. T.-C. Poon and T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370-381 (1999). [CrossRef]
  33. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by use of digital holography,” Opt. Lett. 25, 610-612(2000). [CrossRef]
  34. E. Tajahuerce, O. Matoba, and B. Javidi, “Shift-invariant three-dimensioal object recognition by means of digital holography,” Appl. Opt. 40, 3877-3886 (2001). [CrossRef]
  35. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124-4132(2002). [CrossRef] [PubMed]
  36. Y. Frauel, E. Tajahuerce, O. Matoba, M. Castro, and B. Javidi, “Comparison of passive ranging integral imaging and active imaging digital holography for three-dimensional object recognition,” Appl. Opt. 43, 452-462 (2004). [CrossRef] [PubMed]
  37. S. Yeom and B. Javidi, “Automatic identification of biological microorganisms using three-dimensional complex morphology,” J. Biomed. Opt. 11, 024017 (2006). [CrossRef] [PubMed]
  38. A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A 24, 163-168 (2007). [CrossRef]
  39. B. Javidi and T. Nomura, “Securing information by use of digital holography,” Opt. Lett. 25, 28-30 (2000). [CrossRef]
  40. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595-6601 (2000). [CrossRef]
  41. S. Lai and M. A. Neifeld, “Digital wavefront reconstruction and its application to image encryption,” Opt. Commun. 178, 283-289 (2000). [CrossRef]
  42. O. Matoba and B. Javidi, “Optical retrieval of encrypted digital holograms for secure real-time display,” Opt. Lett. 27, 321-323 (2002). [CrossRef]
  43. T. -C. Poon, T. Kim, and K. Doh, “Optical scanning cryptography of secure wireless transmission,” Appl. Opt. 42, 6496-6503 (2003). [CrossRef] [PubMed]
  44. X. G. Wang and D. M. Zhao, “Image encryption based on anamorphic fractional Fourier transform and three-step phase-shifting interferometry,” Opt. Commun. 268, 240-244(2006). [CrossRef]
  45. O. E. Okman and G. B. Akar, “Quantization index modulation-based image watermarking using digital holography,” J. Opt. Soc. Am. A 24, 243-252 (2007). [CrossRef]
  46. O. Matoba, T. Nomura, E. Perez-Cabre, M. S. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128-1148 (2009). [CrossRef]
  47. T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Method of digital holography: A comparison,” Proc. SPIE 3098, 224-232(1997). [CrossRef]
  48. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). [CrossRef] [PubMed]
  49. I. Yamaguchi, J. Kato, and S. Ohta, “Surface shape measurement by phase-shifting digital holography,” Opt. Rev. 8, 85-89 (2001). [CrossRef]
  50. I. Yamaguchi, S. Ohta, and J. Kato, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001). [CrossRef]
  51. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994). [CrossRef] [PubMed]
  52. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid-holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990-4996 (1999). [CrossRef]
  53. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000). [CrossRef]
  54. Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240, 261-267 (2004). [CrossRef]
  55. M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 187-188.
  56. M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics, 2004), pp. 357-358.
  57. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett. 851069-1071 (2004). [CrossRef]
  58. Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt. 45968-974 (2006). [CrossRef] [PubMed]
  59. Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 452995-3002 (2006). [CrossRef] [PubMed]
  60. T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873-4877(2006). [CrossRef] [PubMed]
  61. M. P. Arroyo and J. Lobera, “A comparison of temporal, spatial and parallel phase shifting algorithms for digital image plane holography,” Meas. Sci. Technol. 19, 074006 (2008). [CrossRef]
  62. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183-D189(2008). [CrossRef] [PubMed]
  63. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Opt. Lett. 29, 1787-1789 (2004). [CrossRef] [PubMed]
  64. D. Gabor, “A new microscopic Principle,” Nature (London) 161, 777-778 (1948). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited