OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 35 — Dec. 10, 2009
  • pp: 6594–6599

Anterior corneal profile with variable asphericity

Marco A. Rosales, Montserrat Juárez-Aubry, Estela López-Olazagasti, Jorge Ibarra, and Eduardo Tepichín  »View Author Affiliations

Applied Optics, Vol. 48, Issue 35, pp. 6594-6599 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (521 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a corneal profile in which the eccentricity, e( Q = e 2 ), has a nonlinear continuous variation from the center outwards. This nonlinear variation is intended to fit and reproduce our current experimental data in which the anterior corneal surface of the human eye exhibits different values of e at different diameters. According to our clinical data, the variation is similar to an exponential decay. We propose a linear combination of two exponential functions to describe the variation of e. We then calculate the corneal sagittal height by substituting e in the first-order aspherical surface equation to obtain the corneal profile. This corneal profile will be used as a reference to analyze the resultant profiles of the customized corneal ablation in refractive surgery.

© 2009 Optical Society of America

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4730) Medical optics and biotechnology : Optical pathology
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 24, 2009
Revised Manuscript: November 5, 2009
Manuscript Accepted: November 6, 2009
Published: December 1, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Marco A. Rosales, Montserrat Juárez-Aubry, Estela López-Olazagasti, Jorge Ibarra, and Eduardo Tepichín, "Anterior corneal profile with variable asphericity," Appl. Opt. 48, 6594-6599 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. N. Thibos and A. Bradley, “Modeling the refractive and neuro-sensor systems of the eye,” in Visual Instrumentation: Optical Design and Engineering Principles, P. Mouroulis, ed. (McGraw-Hill, 1999), pp. 101-159.
  2. A. Gullstrand, “Apendix II,” in Handbuch der Physiologischen Optik, Vol. 1, 3rd ed. (Voss, 1909), English translation edited by J. P. Southall (Optical Society of America, 1962), pp. 351-352.
  3. Y. Le Grand, Optique Physiologique. La Dioptrique de L'Oeil et Su Correction (Review d'Optique, 1946).
  4. W. Lotmar, “Theoretical eye model with aspherics,” J. Opt. Soc. Am. 61, 1522-1529 (1971). [CrossRef]
  5. A. C. Kooijman, “Light distribution on the retina of a wide-angle theoretical eye,” J. Opt. Soc. Am. 73, 1544-1550 (1983). [CrossRef] [PubMed]
  6. R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273-1281 (1985). [CrossRef] [PubMed]
  7. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14, 1684-1695 (1997). [CrossRef]
  8. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vis. Sci. 74, 548-565 (1997). [CrossRef] [PubMed]
  9. D. A. Priest, “The development of an average, anatomically based, young adult, GRIN eye model” MSc thesis (University of Waterloo, 2004).
  10. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24, 2157-2174 (2007). [CrossRef]
  11. M. Mrochen and M. Büeler, “Asphärische Optiken: Physikalische Grundlagen,” Ophthalmologe 105, 224-233 (2008). [CrossRef] [PubMed]
  12. H. T. Kasprzak and D. R. Iskander, “Approximating ocular surfaces by generalised conic curves,” Ophthal. Physiol. Opt. 26, 602-609 (2006). [CrossRef]
  13. J. M. González-Méijome, C. Villa-Collar, R. Montés-Micó, and A. Gomez, “Asphericity of the human cornea with different corneal diameters,” J. Cataract Refract. Surg. 33, 465-473 (2007). [CrossRef] [PubMed]
  14. J. R. Jiménez, R. González Anera, and L. Jiménez del Barco, “Effects on visual function of approximations of the corneal-ablation profile during refractive surgery,” Appl. Opt. 40, 2200-2205 (2001). [CrossRef]
  15. R. G. Anera, C. Villa, J. R. Jiménez, R. Gutiérrez, and L. Jiménez del Barco, “Differences between real and predicted corneal shapes after aspherical corneal ablation,” Appl. Opt. 44, 4528-4532 (2005). [CrossRef] [PubMed]
  16. G. Dai, “Optical surface optimization for the correction of presbyopia,” Appl. Opt. 45, 4184-4195 (2006). [CrossRef] [PubMed]
  17. S. Norrby, P. Piers, C. Campbell, and M. van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46, 6595-6605 (2007). [CrossRef] [PubMed]
  18. X. Wei and L. Thibos, “Modeling the eye's optical system by ocular wavefront tomography,” Opt. Express 16, 20490-20502 (2008). [CrossRef] [PubMed]
  19. Y. Le Grand and S. G. El Hague, Physiological Optics (Springer-Verlag, 1980).
  20. P. M. Kiely, G. Smith, and L. G. Carney, “The mean shape of the human cornea,” Opt. Acta 29, 1027-1040 (1982). [CrossRef]
  21. T. O. Salmon and D. G. Horner, “Comparison of elevation, curvature, and power descriptors for corneal topographic mapping,” Optom. Vis. Sci. 72, 800-808 (1995). [CrossRef] [PubMed]
  22. J. Turuwhenua and J. Henderson, “A novel low-order method for recovery of the corneal shape,” Optom. Vis. Sci. 81, 863-871 (2004). [CrossRef] [PubMed]
  23. S. Somani, K. A. Tuan, and D. Chernyyak, “Corneal ashpericity and retinal image quality: a case study and simulations,” J. Refract. Surg. 20, S581-S585 (2004). [PubMed]
  24. V. A. D. P. Sicam, J. Coppens, T. J. T. P. van den Berg, and R. G. L. van der Heijde, “Corneal surface reconstruction algorithm that uses Zernike polynomial representation,” J. Opt. Soc. Am. A 21, 1300-1306 (2004). [CrossRef]
  25. J. Turuwhenua, “Corneal surface reconstruction algorithm using Zernike polynomial representation: improvements,” J. Opt. Soc. Am. A 24, 1551-1561 (2007). [CrossRef]
  26. G. M. Dai, Wavefront Optics for Vision Correction (SPIE, 2008). [CrossRef]
  27. B. A. J. Clark, “ Autocollimating photokeratoscope,” J. Opt. Soc. Am. 62, 169-176 (1972). [CrossRef] [PubMed]
  28. D. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).
  29. H. Burek and W. A. Douthwaite, “Mathematical models of the general corneal surface,” Ophthalmic Physiol. Opt. 13, 68-72 (1993). [CrossRef] [PubMed]
  30. P. R. Preussner, J. Wahl, and C. Kramann, “Cornea model,” J. Cataract Refract. Surg. 29, 471-477 (2003). [CrossRef] [PubMed]
  31. R. Navarro, L. González, and J. L. Hernandez, “Optics of the average normal cornea from general and canonical representations of its surface topography,” J. Opt. Soc. Am A 23, 219-232 (2006). [CrossRef]
  32. J. Enderlein and R. Erdmann, “Fast fitting of multi-exponential decay curves,” Opt. Commun. 134, 371-378 (1997). [CrossRef]
  33. V. N. Mahajan, Optical Imaging and Aberrations. Part 1: Ray Geometrical Optics (SPIE, 1998), Chap. 5.
  34. R. Cantú, M. A. Rosales, E. Tepichin, A. Curioca, V. Montes, and J. Bonilla, “Advanced surface ablation for presbyopia using the Nidek EC-500 Laser,” J. Refract. Surg. 20, S711-S713(2004). [PubMed]
  35. A. G. Bennett and R. B. Rabbetts, Clinical Visual Optics (Butterworths-Heinemann, 1989).
  36. D. Gatinel, T. Hoang-Xuan, and D. T. Azar, “Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model,” Invest. Ophthalmol. Vis. Sci. 42, 1736-1742 (2001). [PubMed]
  37. D. Gatinel, J. Malet, T. Hoang-Xuan, and D. T. Azar, “Analysis of customized corneal ablations: theoretical limitations of increasing negative asphericity,” Invest. Ophthalmol. Vis. Sci. 43, 941-948 (2002). [PubMed]
  38. J. R. Jiménez, R. G. Anera, and L. Jiménez del Barco, “Equation for corneal asphericity after corneal refractive surgery,” J. Refract. Surg. 19, 65-69 (2003). [PubMed]
  39. D. Gatinel, J. Malet, T. Hoang-Xuan, and D. T. Azar, “Corneal asphericity change after excimer laser hyperopic surgery: theoretical effects on corneal profiles and corresponding zernike expansions,” Invest. Ophthalmol. Vis. Sci. 45, 1349-1359 (2004). [CrossRef] [PubMed]
  40. A. Roorda, “Human visual system--image formation,” in Encyclopedia of human imaging science and technology, J. P. Hornack, ed. (Wiley, 2002), pp. 539-557.
  41. G. M. Dai, Wavefront Optics for Vision Correction (SPIE, 2008). [CrossRef]
  42. E. W. Weisstein, “Nelder-Mead method in MathWorld,” http://mathworld.wolfram.com/Nelder-MeadMethod.html.
  43. J. Schwiegerling, Field Guide to Visual and Ophtalmic Optics (SPIE, 2004). [CrossRef]
  44. R. Cantú, M. A. Rosales, E. Tepichin, A. Curioca, V. Montes, and J. Bonilla, “Whole eye wavefront aberrations in Mexican male subjects,” J. Refract. Surg. 20, S685-S688 (2004). [PubMed]
  45. E. Tepichín, R. Cantú, M. A. Rosales, S. Chavez-Cerda, D. Sánchez de la Llave, A. Curioca, V. Montes, and J. Bonilla, “PSF and MTF analysis of the visual performance in undilated Mexican normal virgin whole eyes (UCVA≥20/20, 20/30 and 20/40),” Proc. SPIE 5688, 9-18 (2005). [CrossRef]
  46. E. Tepichín-Rodriguez, R. Cantú, M. A. Rosales, D. Sánchez de la Llave, J. Ibarra-Galitzia, G. Ramírez-Zavaleta, A. Curioca, V. Montes, and J. Bonilla, “Average PSF and MTF analysis of undilated normal virgin whole eyes,” Proc. SPIE 5959, 57-64 (2005).
  47. E. Tepichín, Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro # 1, Puebla, 72840, México, E. López-Olazagasti, M. A. Rosales, and R. Cantú are preparing a manuscript to be called “Frequency and aberration analysis of the presbyopia and residual ametropia correction after pseudophakia with monofocal IOL using a pseudo-accommodative corneal surface ablation profile.”
  48. A. Sinue Cruz Félix, E. López Olazagasti, M. A. Rosales, J. Ibarra, and E. Tepichín Rodríguez, “PSF and MTF comparison of two different surface ablation techniques for laser visual correction,” Proc. SPIE 7443, 7443E1 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited