OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 35 — Dec. 10, 2009
  • pp: 6643–6650

Simultaneous laser-induced fluorescence and Raman imaging inside a hydrogen engine

Sascha Ronald Engel, Peter Koch, Andreas Braeuer, and Alfred Leipertz  »View Author Affiliations

Applied Optics, Vol. 48, Issue 35, pp. 6643-6650 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (857 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the simultaneous and two-dimensional measurement of laser-induced fluorescence (LIF) and Raman scattering (Ramanography) applied inside a hydrogen internal combustion (IC) engine. Two different LIF tracer molecules, triethylamine (TEA) and trimethylamine (TMA), were used for the LIF experiments. The LIF and Raman results were found to be in very good agreement. The simultaneous application of Ramanography and LIF imaging indicated that TMA is the more suitable LIF tracer molecule, compared to TEA.

© 2009 Optical Society of America

OCIS Codes
(260.2510) Physical optics : Fluorescence
(280.1740) Remote sensing and sensors : Combustion diagnostics
(280.2490) Remote sensing and sensors : Flow diagnostics
(290.5860) Scattering : Scattering, Raman
(300.2530) Spectroscopy : Fluorescence, laser-induced
(110.0115) Imaging systems : Imaging through turbulent media

ToC Category:
Remote Sensing and Sensors

Original Manuscript: September 11, 2009
Manuscript Accepted: October 28, 2009
Published: December 1, 2009

Sascha Ronald Engel, Peter Koch, Andreas Braeuer, and Alfred Leipertz, "Simultaneous laser-induced fluorescence and Raman imaging inside a hydrogen engine," Appl. Opt. 48, 6643-6650 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. C. Miles, “Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines,” Appl. Opt. 38, 1714-1732 (1999). [CrossRef]
  2. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75-121 (2005). [CrossRef]
  3. M. C. Weikl, F. Beyrau, and A. Leipertz, “Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy,” Appl. Opt. 45, 3646-3651 (2006). [CrossRef] [PubMed]
  4. H. Zhao and N. Ladommatos, “Optical diagnostics for in-cylinder mixture formation measurements in IC engines,” Prog. Energy Combust. Sci. 24, 297-336 (1998). [CrossRef]
  5. J. Egermann, W. Koebcke, and A. Leipertz, “Investigation of the mixture formation inside a GDI engine by means of linear Raman spectroscopy,” Proc. Combust. Inst. 28, 1145-1152(2000).
  6. W. Ipp, J. Egermann, V. Wagner, and A. Leipertz, “Visualization of the qualitative fuel distribution and mixture formation inside a transparent GDI engine with 2D MIE and LIEF techniques and comparison to quantitative measurements of the air/fuel ratio with 1D Raman spectroscopy,” SAE Technical Paper 2000-01-1793 (2000).
  7. S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717-723 (2000). [CrossRef]
  8. V. Sick and N. Wermuth, “Single-shot imaging of OH radicals and simultaneous OH radical/acetone imaging with a tunable ND:YAG laser,” Appl. Phys. B 79, 139-143 (2004). [CrossRef]
  9. F. Meier, G. Wiltafsky, J. Köhler, and W. Stolz, “Quantitative time resolved 2-D fuel-air ratio measurements in a hydrogen direct injection SI engine using spontaneous raman scattering,” SAE Technical Paper 961101 (1996).
  10. James D. Smith and V. Sick, “High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine,” Appl. Opt. 44, 6682-6691(2005). [CrossRef] [PubMed]
  11. P. Wieske, S. Wissel, G. Grünefeld, and S. Pischinger, “Improvement of LIEF by wavelength-resolved acquisition of multiple images using a single CCD detector--simultaneous 2D measurement of air/fuel ratio, temperature distribution of the liquid phase and qualitative distribution of the liquid phase with the multi-2D technique,” Appl. Phys. B 83, 323-329 (2006). [CrossRef]
  12. M. Luong, R. Zhang, C. Schulz, and V. Sick, “Toluene laser-induced fluorescence for in-cylinder temperature imaging in internal combustion engines,” Appl. Phys. B 91, 669-675 (2008). [CrossRef]
  13. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Toluene LIF at elevated temperatures: implications for fuel-air ratio measurements,” Appl. Phys. B 80, 147-150 (2005). [CrossRef]
  14. W. Koban, J. Schorr, and C. Schulz, “Oxygen-distribution imaging with a novel two-tracer laser-induced fluorescence technique,” Appl. Phys. B 74, 111-114 (2002). [CrossRef]
  15. K. Kuwahara and H. Ando, “Diagnostics of in-cylinder flow, mixing and combustion in gasoline engines,” Meas. Sci. Technol. 11, R95-R111 (2000). [CrossRef]
  16. D. A. Hansen and E. K. C. Lee, “Radiative and nonradiative transitions in the first excited singlet state of simple linear aldehydes,” J. Chem. Phys. 63, 3272-3277 (1975). [CrossRef]
  17. F. Ossler and M. Alden, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493-502 (1997). [CrossRef]
  18. T. Ni and L. A. Melton, “Fluorescence lifetime imaging: an approach for fuel equivalence ratio imaging,” Appl. Spectrosc. 45, 938-943 (1991). [CrossRef]
  19. M. C. Thurber, F. Grisch, B. J. Kirby, M. Votsmeier, and R. K. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963-4978 (1998). [CrossRef]
  20. W. Koban, J. D. Koch, R. K. Hanson, and C. Schulz, “Oxygen quenching of toluene fluorescence at elevated temperatures,” Appl. Phys. B 80, 777-784 (2005). [CrossRef]
  21. J. Reboux and D. Puechberty, “A new approach of PLIF applied to fuel/air ratio measurement in the compression stroke of an optical SI engine,” SAE Technical Paper 941988 (1994).
  22. J. M. Brault, D. S. Maymir, M. Samimy, and M. Matsuki, “An investigation of mixture formation processes during start-up of a natural gas powered SI engine," SAE Technical Paper 981387 (1998).
  23. J. Hiltner and M. Samimy, “A study of in-cylinder mixing in a natural gas powered engine by planar laser-induced fluorescence,” SAE Technical Paper 961102 (1996).
  24. P. Medaerts and D. Puechberty, “In-cylinder fuel/air mixture and flame front visualization in a transparent engine using PLIF: a comparison between natural gas and gasoline used as fuel,” SAE Technical Paper 982524 (1998).
  25. A. P. Fröba, F. Rabenstein, K. U. Münch, and A. Leipertz, “Mixture of triethylamine (TEA) and benzene as a new seeding material for the quantitative two-dimensional laser-induced exciplex fluorescence imaging of vapor and liquid fuel inside SI engines,” Combust. Flame 112, 199-209 (1998). [CrossRef]
  26. D. L. Hartley, in Laser Raman Gas Diagnostics, M. Lapp and C. M. Penney, eds. (Plenum, 1974), pp. 1151-1157.
  27. R. Schefer, W. Kulatilaka, B. Patterson, and T. Settersten, “Visible emission of hydrogen flames,” Combust. Flame 156, 1234-1241 (2009). [CrossRef]
  28. T. Blotevogel, M. Hartmann, H. Rottengruber, and A. Leipertz, “Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine,” Appl. Opt. 47, 6488-6496(2008). [CrossRef] [PubMed]
  29. A. Braeuer and A. Leipertz, “Two-dimensional Raman mole-fraction and temperature measurements for hydrogen-nitrogen mixture analysis,” Appl. Opt. 48, B57-B64(2009). [CrossRef] [PubMed]
  30. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, 1996).
  31. D. A. Long, Raman Spectroscopy (McGraw-Hill, 1977).
  32. A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982-4989 (2006). [CrossRef] [PubMed]
  33. F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249-253 (1996). [CrossRef]
  34. V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193-204 (2007). [CrossRef]
  35. A. Leipertz and M. Fiebig, “Using Raman intensity dependence on laser polarization for low gas concentration measurements with giant pulse lasers,” Appl. Opt. 19, 2272-2274(1980). [CrossRef] [PubMed]
  36. T. Blotevogel, “Untersuchung der Gemischbildung und Verbrennung bei Wasserstoffmotoren mit Hilfe optischer Messtechniken,” Please check degrees at Refs. 36 and 38.Ph.D. dissertation (University Erlangen-Nuremberg, 2007).
  37. A. Braeuer, F. Beyrau, M. C. Weikl, T. Seeger, J. Kiefer, A. Leipertz, A. Holzwarth, and A. Soika, “Investigation of the combustion process in an auxiliary heating system using dual-pump CARS,” J. Raman Spectrosc. 37, 633-640(2006). [CrossRef]
  38. M. Lutz, “Tracerkonzept zur Visualisierung von Gemischbildungsprozessen in Wasserstoffmotoren,” master's thesis (University Erlangen-Nuremberg, Erlangen, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited