OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 35 — Dec. 10, 2009
  • pp: 6651–6661

Polarization induced instabilities in external four-mirror Fabry–Perot cavities

Fabian Zomer, Yasmina Fedala, Nicolas Pavloff, Viktor Soskov, and Alessandro Variola  »View Author Affiliations

Applied Optics, Vol. 48, Issue 35, pp. 6651-6661 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1316 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Various four-mirror optical resonators are studied from the perspective of realizing passive stacking cavities. A comparative study of the mechanical stability is provided. The polarization properties of the cavity eigenmodes are described, and it is shown that the effect of mirror misalignments (or motions) induces polarization and stacking power instabilities. These instabilities increase with the finesse of the Fabry–Perot cavity. A tetrahedral configuration of the four mirrors is found to minimize the consequences of the mirrors’ motion and misalignment by reducing the instability parameter by at least 2 orders of magnitude.

© 2009 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(350.5500) Other areas of optics : Propagation

ToC Category:
Physical Optics

Original Manuscript: May 22, 2009
Revised Manuscript: October 22, 2009
Manuscript Accepted: October 26, 2009
Published: December 1, 2009

Fabian Zomer, Yasmina Fedala, Nicolas Pavloff, Viktor Soskov, and Alessandro Variola, "Polarization induced instabilities in external four-mirror Fabry-Perot cavities," Appl. Opt. 48, 6651-6661 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kogelnick and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550-1567 (1966). [CrossRef]
  2. R. J. Jones, J. C. Diels, J. Jasapara, and W. Rudolph, “Stabilisation of the frequency, phase, repetition rate of an ultra-short pulse train to a Fabry-Perot cavity,” Opt. Commun. 175, 409-418 (2000). [CrossRef]
  3. P. Sprangle, A. Ting, E. Esarey, and A. Fisher, “Tunable, short pulse hard x-rays from compact laser synchrotron source,” J. Appl. Phys. 72, 5032-5034 (1992). [CrossRef]
  4. J. Chen, K. Iinasaki, M. Fujita, C. Yamanaka, M. Asakawa, S. Nakai, and T. Asakuma, “Development of a compact high brightness X-ray source,” Nucl. Instrum. Methods Phys. Res. A 341, 346-350 (1994). [CrossRef]
  5. Z. Huang and R. D. Ruth, “Laser-electron storage ring,” Phys. Rev. Lett. 80, 976-979 (1998). [CrossRef]
  6. F. E. Carroll, “Tunable monochromatic x rays: a new paradigm in medicine,” Am. J. Roentgenol. 179,583-590 (2002).
  7. M.-C. Biston, A. Joubert, J.-F. Adam, H. Elleaume, S. Bohic, A.-M. Charvet, F. Estève, N. Foray, and J. Balosso, “Cure of Fisher rats bearing radioresistant F98 glioma treated with cis-platinum and irradiated with monochromatic synchrotron x-rays,” Cancer Res. 64, 2317-2323 (2004). [CrossRef] [PubMed]
  8. P. Suorti and W. Thomlinson, “Medical applications of synchrotron radiation,” Phys. Med. Biol. 48, R1-R35 (2003). [CrossRef]
  9. M. Cotte, E. Welcomme, V. A. Solé, M. Salomé, M. Menu, Ph. Walter, and J. Susini, “Synchrotron-based x-ray spectromicroscopy used for the study of an atypical micrometric pigment in 16th century paintings,” Anal. Chem. 79, 6988-6994 (2007). [CrossRef] [PubMed]
  10. R. Hajima, T. Hayakawa, N. Kikuzawa, and E. Minehara, “Proposal of nondestructive radionuclide assay using a high-flux gamma-ray source and nuclear resonance fluorescence,” J. Nucl. Sci. Technol. 45, 441-451 (2008). [CrossRef]
  11. G. Moortgat-Pick,T. Abe, G. Alexander, B. Ananthanarayan, A. A. Babich, V.Bharadwaj, D. Barber, A. Bartl, A. Brachmann, S. Chen, J. Clarke, J. E. Clendenin, J. Dainton, K. Desch, M. Diehl, B. Dobos, T. Dorland, H. Eberl, J. Ellis, K. Flöttmann, H. Fraas, F. Franco-Sollova, F. Franke, A. Freitas, J. Goodson, J. Gray, A. Han, S. Heinemeyer, S. Hesselbach, T. Hirose, K. Hohenwarter-Sodek, J. Kalinowski, T. Kernreiter, O. Kittel, S. Kraml, W. Majerotto, A. Martinez, H.-U. Martyn, W. Menges, A. Mikhailichenko, K. Mönig, K. Moffeit, S. Moretti, O. Nachtmann, F. Nagel, T. Nakanishi, U. Nauenberg, T. Omori, P. Osland, A. A. Pankov, N. Paver, R. Pitthan, R. Pöschl, W. Porod, J. Proulx, P. Richardson, S. Riemann, S. D. Rindani, T. G. Rizzo, P. Schüler, C. Schwanenberger, D. Scott, J. Sheppard, R. K. Singh, A. Sopczak, H. Spiesberger, A. Stahl, H. Steiner, A. Wagner, A. M. Weber, G. Weiglein, G. W. Wilson, M. Woods, P. Zerwas, J. Zhang, and F. Zomer, “The role of polarized positrons and electrons in revealing fundamental interactions at the linear collider,” Phys. Rep. 460, 131-243 (2008). [CrossRef]
  12. R. J. Loewen, “A compact light source: design and technical feasibility study of a laser-electron storage ring X-ray source,” Ph.D. dissertation (Department of Physics, Stanford University, 2003.
  13. C. J. Hood, H. J. Kimble, and J. Ye, “Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in optical cavity,” Phys. Rev. A 64, 033804-033811 (2001). [CrossRef]
  14. N. I. Zheludev, “Polarization instability and multistability in nonlinear optics,” Sov. Phys. Usp. 32, 357-375 (1989). [CrossRef]
  15. D. T. Atwood, Soft X-Rays and Extreme Ultraviolet Radiation (Cambridge U. Press, 2007).
  16. S. Balestri, P. Burlamacchi, V. Greco, and G. Molesini, “Folded CO2 laser resonators with controlled beam quality,” Opt. Commun. 104, 91-106 (1993). [CrossRef]
  17. A. E. Siegman, Lasers (University Science, 1986), p. 607.
  18. J. Yuan and X. Long, “Optical-axis perturbation in nonplanar ring resonators,” Opt. Commun. 281, 1204-1210 (2008). [CrossRef]
  19. S. A. Collins Jr., “Analysis of optical resonators involving focusing elements,” Appl. Opt. 3, 1263-1275 (1964). [CrossRef]
  20. MATLAB 6.5 software, The MathWorks Inc., 3 Apple Hill Drive, Natick, Mass., USA.
  21. J. A. Arnaud, “Degenerate optical cavity,” Appl. Opt. 8, 189-195 (1969). [CrossRef] [PubMed]
  22. A. C. Nilsson, E. K. Gustafson, and R. L. Byer, “Eigenpolarization theory of monolithic nonplanar ring oscillators,” IEEE J. Quantum Electron. 25, 767-790 (1989). [CrossRef]
  23. E. Hecht, Optics (Addison-Wesley, 2002), p 426.
  24. S. Saraf, R. L. Byer, and P. J. King, “High-extinction-ratio resonant cavity polarizer for quantum-optics measurements,” Appl. Opt. 46, 3850-3855 (2007). [CrossRef] [PubMed]
  25. W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57, 61-104 (1985). [CrossRef]
  26. H. Jiao, S. R. Wilkinson, R. Y. Chiao, and H. Nathel, “Topological phases in optics by means of nonplanar Mach-Zehnder interferometer,” Phys. Rev. A 39, 3475-3486 (1989). [CrossRef] [PubMed]
  27. H. W. Kogelnik, E. P. Ippen, A. Dienes, and C. V. Shank, “Astigmatically compensated cavities for cw dye lasers,” IEEE J. Quantum Electron. 8, 373-379 (1972). [CrossRef]
  28. V. Magni, S. De Silvestri, and A. Cybo-Ottone, “On the stability, mode properties, and misalignment sensitivity of femtosecond dye laser resonators,” Opt. Commun. 82, 137-144(1991). [CrossRef]
  29. M. Born and E. Wolf, Principles of Optics (Pergamon, 1965), p 30.
  30. J. A. Arnaud and H. Kogelnik, “Gaussian light beam with general astigmatism,” Appl. Opt. 8, 1687-1693 (1969). [CrossRef] [PubMed]
  31. J. A. Arnaud, “Nonorthogonal waveguides and resonators,” Bell Syst. Tech. J. 49, 2311-2348 (1970).
  32. D. Jacob, M. Vallet, F. Bretenaker, A. Le Floc, and M. Oger, “Supermirror phase anisotropy measurement,” Opt. Lett. 20, 671-673 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited