OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 35 — Dec. 10, 2009
  • pp: 6692–6700

Mode stability of external cavity diode lasers

Sebastian D. Saliba, Mark Junker, Lincoln D. Turner, and Robert E. Scholten  »View Author Affiliations

Applied Optics, Vol. 48, Issue 35, pp. 6692-6700 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (702 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mode stability is an important performance characteristic of external cavity diode lasers (ECDLs). It has been well established that the continuous mode-hop-free tuning range of a grating-feedback ECDL can be optimized by rotating the grating about a specific pivot location. We show that similar results can be obtained for other more convenient pivot locations by choosing instead the cavity length and grating location. The relative importance of the temperature stability of the diode and of the external cavity is also evaluated. We show that mechanically simple ECDL designs, using mostly standard components, can readily achieve a 35 GHz mode-hop-free tuning range at 780 nm .

© 2009 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3410) Lasers and laser optics : Laser resonators
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.3600) Lasers and laser optics : Lasers, tunable
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 11, 2009
Revised Manuscript: October 27, 2009
Manuscript Accepted: October 27, 2009
Published: December 1, 2009

Sebastian D. Saliba, Mark Junker, Lincoln D. Turner, and Robert E. Scholten, "Mode stability of external cavity diode lasers," Appl. Opt. 48, 6692-6700 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981). [CrossRef]
  2. R. Wyatt and W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110-112 (1983). [CrossRef]
  3. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20 (1991). [CrossRef]
  4. K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992). [CrossRef]
  5. K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995). [CrossRef]
  6. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002). [CrossRef]
  7. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995). [CrossRef]
  8. A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236-1239(1998). [CrossRef]
  9. T. Hof, D. Fick, and H. J. Jänsch, “Application of diode lasers as a spectroscopic tool at 670 nm,” Opt. Commun. 124, 283-286 (1996). [CrossRef]
  10. K. C. Harvey and C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910-912 (1991). [CrossRef] [PubMed]
  11. S. Lecomte, E. Fretel, G. Mileti, and P. Thomann, “Self-aligned extended-cavity diode laser stabilized by the Zeeman effect on the cesium D2 line,” Appl. Opt. 39, 1426-1429(2000). [CrossRef]
  12. W. R. Trutna, Jr., and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol. 11, 1279-1286 (1993). [CrossRef]
  13. C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477-4479(2001). [CrossRef]
  14. V. V. Vassiliev, S. Zibrov, and V. Velichansky, “Compact extended-cavity diode laser for atomic spectroscopy and metrology,” Rev. Sci. Instrum. 77, 013102 (2006). [CrossRef]
  15. M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000). [CrossRef]
  16. T. Hieta, M. Vainio, C. Moser, and E. Ikonen, “External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range,” Opt. Commun. 282, 3119-3123 (2009). [CrossRef]
  17. P. Zorabedian and W. R. Trutna, Jr., “Interference-filter-tuned, alignment-stabilized, semiconductor external-cavity laser,” Opt. Lett. 13, 826-828 (1988). [CrossRef] [PubMed]
  18. X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006). [CrossRef]
  19. M. Gilowski, C. Schuberta, M. Zaisera, W. Herra, T. Wübbenaa, T. Wendricha, T. Müllera, E. M. Rasela, and W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280, 443-447 (2007). [CrossRef]
  20. P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, 1995), pp. 349-442. [CrossRef]
  21. G. Galbács, “A review of applications and experimental improvements related to diode laser atomic spectroscopy,” Appl. Spectrosc. Rev. 41, 259-303 (2006). [CrossRef]
  22. B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers: a review,” Opto-Electron. Rev. 16, 347-366(2008). [CrossRef]
  23. P. McNicholl and H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings.,” Appl. Opt. 24, 2757-2761 (1985). [CrossRef] [PubMed]
  24. L. Nilse, J. J. Davies, and C. S. Adams, “Synchronous tuning of extended cavity diode lasers: the case for an optimum pivot point,” Appl. Opt. 38, 548-553 (1999). [CrossRef]
  25. M. de Labachelerie and G. Passedat, “Mode-hop suppression of Littrow grating-tuned lasers,” Appl. Opt. 32, 269-274 (1993). [CrossRef] [PubMed]
  26. M. de Labachelerie, H. Sasada, and G. Passedat, “Mode-hop suppression of Littrow grating-tuned lasers: erratum,” Appl. Opt. 33, 3817-3819 (1994). [CrossRef] [PubMed]
  27. We used a Thorlabs LT230P-B collimation tube, Newport Ultima and Fine-Adjustment Earth-series kinematic mounts, Spectraphysics 33001FL02-330H gold-coated holographic grating, Melcor CP1.4-71-045L TEC, Tokin AE0203D04 piezoelectric actuator, Sanyo DL-7140-201 diode, High Finesse WS-6 Fizeau wavemeter, and a MOGLabs DLC-202 ECDL controller. Note: certain commercial equipment, instruments, or materials are identified in this paper in order to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement, nor does it imply that the materials or equipment are necessarily the best available for the purpose.
  28. C. J. Myatt, N. R. Newbury, and C. E. Wieman, “Simplified atom trap by using direct microwave modulation of a diode laser,” Opt. Lett. 18, 649-651 (1993). [CrossRef] [PubMed]
  29. P. Feng and T. Walker, “Inexpensive diode laser microwave modulation for atom trapping,” Am. J. Phys. 63, 905-908(1995). [CrossRef]
  30. J. Ringot, Y. Lecoq, J. C. Garreau, and P. Szriftgiser, “Generation of phase-coherent laser beams for Raman spectroscopy and cooling by direct current modulation of a diode laser,” Eur. Phys. J. D 7, 285-288 (1999). [CrossRef]
  31. R. Kowalski, S. Root, S. D. Gensemer, and P. L. Gould, “A frequency-modulated injection-locked diode lsaer for two-frequency generation,” Rev. Sci. Instrum. 72, 2532-2534 (2001). [CrossRef]
  32. A. Waxman, M. Givon, G. Aviv, D. Groswasser, and R. Folman, “Modulation enhancement of a diode laser in an external cavity,” Appl. Phys. B 95, 301-305 (2009). [CrossRef]
  33. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1993), pp. 402-405.
  34. T. Nayuki, T. Fujii, K. Nemoto, M. Kozuma, M. Kourogi, and M. Ohtsu, “Continuous wavelength sweep of external cavity laser diode without antireflection coating on output facet,” Opt. Rev. 5, 267-270 (1998). [CrossRef]
  35. C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811-3815 (2001). [CrossRef]
  36. J. Hult, I. S. Burns, and C. F. Kaminski, “Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers,” Appl. Opt. 44, 3675-3685 (2005). [CrossRef] [PubMed]
  37. H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1-7 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited