OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 35 — Dec. 10, 2009
  • pp: 6716–6733

Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring

Akihiko Kuze, Hiroshi Suto, Masakatsu Nakajima, and Takashi Hamazaki  »View Author Affiliations


Applied Optics, Vol. 48, Issue 35, pp. 6716-6733 (2009)
http://dx.doi.org/10.1364/AO.48.006716


View Full Text Article

Enhanced HTML    Acrobat PDF (1612 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Greenhouse Gases Observing Satellite (GOSAT) monitors carbon dioxide ( CO 2 ) and methane ( CH 4 ) globally from space using two instruments. The Thermal and Near Infrared Sensor for Carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) detects gas absorption spectra of the solar short wave infrared (SWIR) reflected on the Earth’s surface as well as of the thermal infrared radiated from the ground and the atmosphere. TANSO-FTS is capable of detecting three narrow bands (0.76, 1.6, and 2.0 μm ) and a wide band ( 5.5 14.3 μm ) with 0.2 cm 1 spectral resolution (interval). The TANSO Cloud and Aerosol Imager (TANSO-CAI) is an ultraviolet (UV), visible, near infrared, and SWIR radiometer designed to detect cloud and aerosol interference and to provide the data for their correction. GOSAT is placed in a sun-synchronous orbit 666 km at 13:00 local time, with an inclination angle of 98 ° . A brief overview of the GOSAT project, scientific requirements, instrument designs, hardware performance, on-orbit operation, and data processing is provided.

© 2009 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: March 2, 2009
Revised Manuscript: October 22, 2009
Manuscript Accepted: October 31, 2009
Published: December 2, 2009

Citation
Akihiko Kuze, Hiroshi Suto, Masakatsu Nakajima, and Takashi Hamazaki, "Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring," Appl. Opt. 48, 6716-6733 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-35-6716


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Rayner and D. M. O'Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175-178 (2001). [CrossRef]
  2. A. Chédin, A. Hollingsworth, N. A. Scott, S. Serrar, C. Crevoisier, and R. Amante, “Annual and seasonal variations of atmospheric CO2, N2O and CO concentrations retrieved from NOAA/TOVS satellite observations,” Geophys. Res. Lett. 29, 110-114 (2002). [CrossRef]
  3. A. Chédin, S. Serrar, N. A. Scott, C. Crevoisier, and R. Amante, “First global measurement of midtropospheric CO2 from NOAA polar satellites: tropical zone,” J. Geophys. Res. 108, 4581 (2003). [CrossRef]
  4. R. J. Engelen, E. Andersson, F. Chevallier, A. Hollingsworth, M. Matricardi, A. P. Mc-Nally, J.-N. Thépaut, and P. D. Watts, “Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational 4D-Var data assimilation system: methodology and first results,” J. Geophys. Res. 109, D19309 (2004). [CrossRef]
  5. M. Buchwitz, M. R. de Beek, S. Noël, J. P. Burrows, H. Bovensmann, H. Bremer, P. Bergamaschi, S. Körner, and M. Heimann, “Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: year 2003 initial data set,” Atmos. Chem. Phys. 5, 3313-3329(2005). [CrossRef]
  6. M. P. Barkley, U. Frieß, and P. S. Monks, “Measuring atmospheric CO2 from space using full spectral initiation (FSI) WFM-DOAS,” Atmos. Chem. Phys. 6, 3517-3534 (2006). [CrossRef]
  7. D. Crisp, R. M. Atlas, F.-M. Breon, L. R. Brown, J. P. Burrows, P. Ciais, B. J. Connor, S. C. Doney, I. Y. Fung, D. J. Jacob, C. E. Miller, D. O'Brien, S. Pawson, J. T. Randerson, P. Rayner, R. J. Salawitch, S. P. Sander, B. Sen, G. L. Stephens, P. P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, and S. Schroll, “The Orbiting Carbon Observatory (OCO) Mission,” Adv. Space Res. 34, 700-709 (2004). [CrossRef]
  8. D. Crisp, C. E. Miller, and P. L. DeCola, “NASA Orbiting Carbon Observatory: measuring the column averaged carbon dioxide mole fraction from space,” J. Appl. Remote Sens. 2, 023508 (2008). [CrossRef]
  9. A. Kuze and H. Suto, “TOKYO and TSUKUBA models: TANSO precursor experiments,” Trans. JSASS Space Technol. Japan 7(26), Po_4_1-Po_4_6 (2009).
  10. Y. Yoshida, H. Oguma, I. Morino, H. Suto, T. Yokota, G. Inoue, and A. Kuze, “Measurement of CO2 absorption spectra at an altitude of 800 meters by using the FTS (GOSAT-BBM) in SWIR spectral region,” presented at the 2nd Asian-Pacific Radiation Symposium, Kanazawa, Japan, July 2006.
  11. S. C. Olsen and J. T. Randerson, “Differences between surface and column atmospheric CO2 and implications for carbon cycle research,” J. Geophys. Res. 109, D02301 (2004). [CrossRef]
  12. N. Eguchi and T. Yokota, “Investigation of clear-sky occurrence rate estimated from CALIOP and MODIS observations,” Geophys. Res. Lett. 35, L23816 (2008). [CrossRef]
  13. C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Bösch, B. J. Connor, I. Y. Fung, D. O'Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007). [CrossRef]
  14. Z. Kuang, J. Margolis, G. Toon, D. Crisp, and Y. Yung, “Spaceborne measurements of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: an introductory study,” Geophys. Res. Lett. 29, 1716 (2002). [CrossRef]
  15. A. Kuze and K. V. Chance, “Analysis of cloud top height and cloud coverage from satellites using O2 A and B bands,” J. Geophys. Res. 99, 14481-14491 (1994). [CrossRef]
  16. E. Boesche, P. Stammes, R. Preusker, R. Bennartz, W. H. Knap, and J. Fischer, “Polarization of skylight in the O2 A band: effects of aerosol properties,” Appl. Opt. 47, 3467-3480 (2008). [CrossRef] [PubMed]
  17. T. Yokota, H. Oguma, I. Morino, and G. Inoue, “A nadir looking “SWIR” sensor to monitor CO2 column density for Japanese “GOSAT” project,” in Proceedings of the Twenty-fourth International Symposium on Space Technology and Science (Selected Papers) (Japan Society for Aeronautical and Space Sciences, 2004), pp. 887-889.
  18. G. Inoue, T. Yokota, H. Oguma, A. Higurashi, I. Morino, and T. Aoki, “Overview of Greenhouse Gases Observing Satellite (GOSAT) of Japan,” presented at the AGU 2004 Fall Meeting, San Francisco, California, USA (13-17 December 2004), abstract A51C-0790.
  19. T. Yokota, H. Oguma, A. Higurashi, I. Morino, T. Aoki, and G. Inoue, “Sensor specification demand of a nadir looking SWIR FTS aboard GOSAT to monitor CO2 column density in the clear sky condition,” presented at the AGU 2004 Fall Meeting, San Francisco, California, USA (13-17 December 2004), abstract A51C-0788.
  20. H. Ishihara, N. Uemura, K. Nobura, T. Yokota, A. Higurashi, I. Morino, T. Aoki, and G. Inoue, “Retrieval precision tests of CO2 column amount from simulated data of the GOSAT SWIR FTS by applying Rodgers' method,” presented at the AGU 2004 Fall Meeting, San Francisco, California, USA (13-17 December 2004), abstract A51C-0789.
  21. N. Saitoh, R. Imasu, Y. Ota, and Y. Niwa, “CO2 retrieval algorithm for the thermal infrared spectra of the Greenhouse Gases Observing Satellite: potential of retrieving CO2 vertical profile from high-resolution FTS sensor,” J. Geophys. Res. 114, D17305 (2009). [CrossRef]
  22. E. Dufour and F.-M. Breon, “Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error analysis,” Appl. Opt. 42, 3595-3609(2003). [CrossRef] [PubMed]
  23. H. Bösch, G. C. Toon, B. Sen, R. A. Washenfelder, P. O. Wennberg, M. Buchwitz, R. de Beek, J. P. Burrows, D. Crisp, M. Christi, B. J. Connor, V. Natraj, and Y. L. Yung, “Space-based near-infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin,” J. Geophys. Res. 111, D23302 (2006). [CrossRef]
  24. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandi, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  25. N. A. J. Schutgens, L. G. Tilstra, P. Stammes, and F.-M. Bréon, “On the relationship between Stokes parameters Q, and U of atmospheric ultraviolet/visible/near-infrared radiation,” J. Geophys. Res. 109, D09205 (2004). [CrossRef]
  26. L. G. Tilstra and P. Stammes, “Earth reflectance and polarization intercomparison between SCIAMACHY onboard Envisat and POLDER onboard ADEOS-2,” J. Geophys. Res. 112, D11304 (2007). [CrossRef]
  27. T. Urabe, A. Kuze, T. Hamazaki, N. Baba, S. Minami, and H. Saruwatari, “The instrumentation and the contamination control activity of thermal and near-infrared sensor for carbon observation (TANSO) on GOSAT,” Proc. SPIE 6291, 629101(2006). [CrossRef]
  28. T. Urabe, A. Kuze, H. Suto, and T. Hamazaki, “Overview of GOSAT contamination control activity and test results summary,” Proc. SPIE 6678, 667817 (2007). [CrossRef]
  29. B. Saggin, L. Comolli, and V. Formisano, “Mechanical disturbances in Fourier spectrometers,” Appl. Opt. 46, 5248-5256(2007). [CrossRef] [PubMed]
  30. F. Sakuma, “New development of 1.6 um InGaAs radiometer for preflight cross-calibration measurement,” in Proceedings of IEEE 2007 International Geoscience and Remote Sensing Symposium (IEEE, 2007), pp. 4136-4139. [CrossRef]
  31. F. Sakuma, S. Kawakami, and A. Kuze, “Development of 2 μm InGaAs radiometer for preflight cross-calibration measurement,” in Proceedings of IEEE 2008 International Geoscience and Remote Sensing Symposium (IEEE, 2008), pp. IV-1356-IV-1359
  32. F. Sakuma, C. Bruegge, D. Rider, D. Brown, S. Geier, S. Kawakami, and A. Kuze, “OCO-GOSAT Preflight Cross Calibration Experiment,” IEEE Trans. Geosci. Remote Sens. (to be published). [CrossRef]
  33. T. C. Stone, “Radiometric calibration stability and inter-calibration of solar-band instruments in orbit using the moon,” Proc. SPIE 7081, 70810X (2008). [CrossRef]
  34. C. J. Bruegge, N. L. Chrien, R. R. Ando, D. J. Diner, W. A. Abdou, M. C. Helmlinger, S. H. Pilorz, and K. J. Thome, “Early validation of the multi-angle imaging spectroradiometer (MISR) radiometric scale,” IEEE Trans. Geosci. Remote Sens. 40, 1477-1492 (2002). [CrossRef]
  35. T. Yokota, H. Watanabe, O. Uchino, I. Morino, Y. Yoshida, and S. Maksyutov, “Current status of the GOSAT data handling facility, data retrieval and inverse model algorithms, validation plan, and GOSAT research announcement,” presented at the AGU 2008 Fall Meeting, San Francisco, California, USA (15-19 December 2008), abstract A32B-02.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited