OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 35 — Dec. 10, 2009
  • pp: 6740–6753

Measurements of CO 2 concentration and temperature at high pressures using 1 f -normalized wavelength modulation spectroscopy with second harmonic detection near 2.7 μm

A. Farooq, J. B. Jeffries, and R. K. Hanson  »View Author Affiliations

Applied Optics, Vol. 48, Issue 35, pp. 6740-6753 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1887 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Tunable diode lasers (TDL) near 2.7 μm are used to measure high-resolution direct absorption and wave length modulation with second harmonic (WMS- 2 f ) spectra at high pressures for two CO 2 transitions near 3633.08 and 3645.20 cm 1 , belonging to the ν 1 + ν 3 vibrational band. Important factors influencing the design of a high-pressure TDL sensor and the variation of WMS- 2 f line shape with changes in pressure and laser parameters are discussed. Measurements of line strength and line broadening parameters are carried out for the 3645.20 cm 1 transition in an atmospheric-pressure, high-temperature cell. A room-temperature high-pressure cell is then used to measure the pressure shift for both CO 2 transitions. Deviation of the direct absorption and wavelength division spectroscopy (WMS) spectra from the Lorentzian profile is studied in a high-density ( 9.2   amagats ) CO 2 –Ar mixture. The WMS spectra are shown to be negligibly affected by non-Lorentzian effects up to 10 atm and room temperature, in contrast with direct absorption. Measurements of CO 2 concentration and temperature are carried out in nonreactive shock-tube experiments ( P 8 12 atm , T 800 1200 K ) to validate the accuracy and precision of wavelength-modulation-spectroscopy-based sensing. CO 2 time histories are then measured in heptane ignition experiments and compared with reaction kinetics mechanisms to demonstrate the use of this sensor in high-pressure combustion systems.

© 2009 Optical Society of America

OCIS Codes
(280.1740) Remote sensing and sensors : Combustion diagnostics
(280.3420) Remote sensing and sensors : Laser sensors
(300.1030) Spectroscopy : Absorption
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6340) Spectroscopy : Spectroscopy, infrared
(280.6780) Remote sensing and sensors : Temperature

ToC Category:

Original Manuscript: July 15, 2009
Manuscript Accepted: October 15, 2009
Published: December 2, 2009

A. Farooq, J. B. Jeffries, and R. K. Hanson, "Measurements of CO2 concentration and temperature at high pressures using 1f-normalized wavelength modulation spectroscopy with second harmonic detection near 2.7 μm," Appl. Opt. 48, 6740-6753 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Aoyagi, H. Osada, M. Misawa, Y. Goto, and H. Ishii, “Advanced diesel combustion using of wide range, high boosted and cooled EGR system by single cylinder engine,” SAE Technical Paper 2006-01-0077 (SAE, 2006).
  2. J.-P. Pirault, T. W. Ryan, T. F. Alger, and C. E. Roberts, “Performance predictions for high efficiency stoichiometric spark ignited engines,” SAE Technical Paper 2005-01-0995 (SAE, 2005).
  3. C. F. Edwards, K.-Y. Teh, and S. L. Miller, “Development of low-exergy-loss, high-efficiency chemical engines,” Global Climate and Energy Project Technical Report (Stanford University, 2006).
  4. C. K. Westbrook, “Chemical kinetics of hydrocarbon ignition in practical combustion systems,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 1563-1577. [CrossRef]
  5. S. T. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, “Diode-laser sensor for monitoring multiple combustion parameters in pulse detonation engines,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 587-594. [CrossRef]
  6. D. W. Mattison, J. B. Jeffries, R. K. Hanson, R. R. Steeper, S. De Zilwa, J. E. Dec, M. Sjoberg, and W. Hwang, “In-cylinder gas temperature and water concentration measurements in HCCI engines using a multiplexed-wavelength diode-laser system: Sensor development and initial demonstration,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 791-798. [CrossRef]
  7. T. F. E. Schlosser, H. Teichert, and V. Ebert, “In-situ-detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers,” Spectrochim. Acta 58, 2347-2359 (2002). [CrossRef]
  8. T. Fernholz, H. Teichert, and V. Ebert, “Digital, phase-sensitive detection for in situ diode-laser spectroscopy under rapidly changing transmission conditions,” Appl. Phys. B 75, 229-236 (2002). [CrossRef]
  9. G. B. Rieker, H. Li, X. Liu, J. T. C. Liu, J. B. Jeffries, R. K. Hanson, M. G. Allen, S. D. Wehe, P. A. Mulhall, H. S. Kindle, A. Kakuho, K. R. Sholes, T. Matsuura, and S. Takatani, “Rapid measurements of temperature and H2O concentration in IC engines with a spark plug-mounted diode laser sensor,” in Proceedings of the Combustion Institute (Elsevier, 2007), Vol. 31, pp. 3041-3049. [CrossRef]
  10. L. A. Kranendonk, J. W. Walewski, T. Kim, and S. T. Sanders, “Wavelength-agile sensor applied for HCCI engine measurements,” in Proceedings of the Combustion Institute (Elsevier, 2005), Vol. 30, pp. 1619-1627. [CrossRef]
  11. G. Rieker, J. Jeffries, and R. Hanson, “Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design,” Appl. Phys. B 94, 51-63 (2009). [CrossRef]
  12. Nanosystem and Technologies GmbH, http://www.nanoplus.com.
  13. A. Farooq, J. B. Jeffries, and R. K. Hanson, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 075604 (2008). [CrossRef]
  14. S. W. K. Wunderle and V. Ebert, “2.7 μm DFB diode laser spectrometer for sensitive spatially resolved H2O vapor detection,” presented at the Topical Meeting on Laser Applications to Chemical, Security and Environmental Analysis, St. Petersburg, Florida, USA, 17-20 March 2008.
  15. A. Farooq, J. B. Jeffries, and R. K. Hanson, “CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm,” Appl. Phys. B 90, 619-628(2008). [CrossRef]
  16. A. Farooq, J. B. Jeffries, and R. K. Hanson, “Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm,” Appl. Phys. B 96, 161-173 (2009). [CrossRef]
  17. HITRAN, http://cfa-www.harvard.edu/HITRAN/ 2008.
  18. M. Y. Perrin and J. M. Hartmann, “Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3 μm CO2 band,” J. Quant. Spectrosc. Radiat. Transfer 42, 311-317 (1989). [CrossRef]
  19. F. Niro, C. Boulet, and J. M. Hartmann, “Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. I: model and laboratory measurements,” J. Quant. Spectrosc. Radiat. Transfer 88, 483-498 (2004). [CrossRef]
  20. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers--comparison of experiment and theory,” Appl. Phys. B 26, 203-210 (1981). [CrossRef]
  21. G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87, 169-178 (2007). [CrossRef]
  22. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38, 5803-5815 (1999). [CrossRef]
  23. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707-717 (1992). [CrossRef] [PubMed]
  24. T. Aizawa, “Diode-laser wavelength-modulation absorption spectroscopy for quantitative in situ measurements of temperature and OH radical concentration in combustion gases,” Appl. Opt. 40, 4894-4903 (2001). [CrossRef]
  25. H. Li, G. B. Rieker, X. Liu, J. B. Jeffries, and R. K. Hanson, “Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases,” Appl. Opt. 45, 1052-1061(2006). [CrossRef] [PubMed]
  26. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545-562(1998). [CrossRef]
  27. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, and J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026-4032 (1996). [CrossRef] [PubMed]
  28. D. T. Cassidy and J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1185-1190 (1982). [CrossRef] [PubMed]
  29. H. Li, A. Farooq, J. B. Jeffries, and R. K. Hanson, “Near-infrared diode laser absorption sensor for rapid measurements of temperature and water vapor in a shock tube,” Appl. Phys. B 89, 407-416 (2007). [CrossRef]
  30. J. T. Herbon, R. K. Hanson, C. T. Bowman, and D. M. Golden, “The reaction of CH3+O2: experimental determination of the rate coefficients for the product channels at high temperatures,” in Proceedings of the Combustion Institute (Elsevier, 2005), Vol. 30, pp. 955-963. [CrossRef]
  31. R. K. Hanson and D. F. Davidson, in Handbook of Shock Waves, G. Ben-Dor, O. Igra, and T. Elperin, eds. (Academic, 2001), Vol 1, Chap. 5.2.
  32. D. F. Davidson and R. K. Hanson, “Recent advances in shock tube/laser diagnostic methods for improved chemical kinetics measurements,” Shock Waves 19, 271-283 (2009). [CrossRef]
  33. Z. Hong, G. Pang, S. Vasu, D. Davidson, and R. Hanson, “The use of driver inserts to reduce non-ideal pressure variations behind reflected shock waves,” Shock Waves 19, 113-123(2009). [CrossRef]
  34. B. Sirjean, E. Dames, D. A. Sheen, X.-Q. You, C. Sung, A. T. Holley, F. N. Egolfopoulos, H. Wang, S. S. Vasu, D. F. Davidson, R. K. Hanson, H. Pitsch, C. T. Bowman, A. Kelley, C. K. Law, W. Tsang, N. P. Cernansky, D. L. Miller, A. Violi, and R. P. Lindstedt, “A high-temperature chemical kinetic model of n-alkane oxidation, JetSurfversion 0.2,” http://melchior.usc.edu/JetSurF/Version0_2/Index.html (2008).
  35. H. Seiser, H. Pitsch, K. Seshadri, W. J. Pitz, and H. J. Curran, “Extinction and autoignition of n-heptane in counterflow configuration,” in Proceedings of the Combustion Institute (Elsevier, 2000), Vol. 28, pp. 2029-2037. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited