OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 35 — Dec. 10, 2009
  • pp: 6754–6759

Spectrally resolved cavity ring down measurement of high reflectivity mirrors using a supercontinuum laser source

Gabriele Schmidl, Wolfgang Paa, Wolfgang Triebel, Stefan Schippel, and Hartmut Heyer  »View Author Affiliations


Applied Optics, Vol. 48, Issue 35, pp. 6754-6759 (2009)
http://dx.doi.org/10.1364/AO.48.006754


View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate a cavity ring down setup that offers the possibility to measure the spectrally resolved reflectivities of high reflectivity mirrors. The setup consists of a resonator (ring down cavity) and an intensified CCD camera system combined with a spectrograph for spectral resolution. A commercial supercontinuum laser ( 350 1750 nm ) is applied as a compact excitation source. It is based on a photonic crystal fiber that is pumped by a q-switched microchip laser ( 1.6 ns pulse duration, 25 kHz repetition rate). This combination allows simultaneously recording the transmittance of the cavity over a wide wavelength range determined by the excitation source and the spectral sensitivity of the detector. The photon lifetimes inside the cavity (ring down times) are measured with high spectral resolution by means of an intensified camera system. Subsequently shifting the “gate” of the image intensifier from short to long delay times after the excitation pulse allows calculation of the reflectivity spectrum of the mirrors. Comparison of these results with measurements using a conventional setup (laser diode 675 nm and photomultiplier tube) clearly shows the high potential of the method due to the multichannel excitation and the detection scheme.

© 2009 Optical Society of America

OCIS Codes
(040.1880) Detectors : Detection
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(140.4780) Lasers and laser optics : Optical resonators

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: July 28, 2009
Revised Manuscript: November 2, 2009
Manuscript Accepted: November 3, 2009
Published: December 2, 2009

Citation
Gabriele Schmidl, Wolfgang Paa, Wolfgang Triebel, Stefan Schippel, and Hartmut Heyer, "Spectrally resolved cavity ring down measurement of high reflectivity mirrors using a supercontinuum laser source," Appl. Opt. 48, 6754-6759 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-35-6754


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565-607 (2000). [CrossRef]
  2. S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, “Broadband cavity ringdown spectroscopy of the NO3 radical,” Chem. Phys. Lett. 342, 113-120 (2001). [CrossRef]
  3. R. N. Muir and A. J. Alexander, “Structure of monolayer dye films studied by Brewster angle cavity ringdown spectroscopy,” Phys. Chem. Chem. Phys. 5, 1279-1283 (2003). [CrossRef]
  4. R. Engeln, G. von Helden, A. J. A. van Roij, and G. Meijer, “Cavity ring down spectroscopy on solid C60,” J. Chem. Phys. 110, 2732-2733 (1999). [CrossRef]
  5. A. J. Hallock, E. S. F. Berman, and R. N. Zare, “Use of broadband, continuous-wave diode lasers in cavity ring-down spectroscopy for liquid samples,” Appl. Spectrosc. 57, 571-573 (2003). [CrossRef] [PubMed]
  6. G. A. Marcus and H. A. Schwettman, “Cavity ringdown spectroscopy of thin films in the mid-infrared,” Appl. Opt. 41, 5167-5171 (2002). [CrossRef] [PubMed]
  7. Ch. Mühlig, G. Schmidl, J. Bergmann, and W. Triebel, “Characterization of high reflecting coatings and optical materials by direct absorption and cavity ring down measurements,” Proc. SPIE 7102, 71020T (2008). [CrossRef]
  8. T. Baselt, T. Hammer, F. Basan, and P. Hartmann, “Application of a microchip laser pumped photonic crystal fiber supercontinuum source for high sensitive cavity ring down optical loss measurements,” Proc. SPIE 7195, 71951T (2009). [CrossRef]
  9. K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Towards supercontinuum cavity ring-down spectroscopy,” Appl. Phys. B 94, 369-373 (2009). [CrossRef]
  10. K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyzewski, T. Stacewicz, and L. Wöste, “Cavity ring-down absorption spectrography based on filament-generated supercontinuum light,” Opt. Express 17, 3673-3678 (2009). [CrossRef] [PubMed]
  11. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, “Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source,” Opt. Express 16, 10178-10188 (2008). [CrossRef] [PubMed]
  12. C. Vallance, “Innovations in cavity ringdown spectroscopy,” New J. Chem. 29, 867-874 (2005). [CrossRef]
  13. J. J. Scherer, “Ringdown spectral photography,” Chem. Phys. Lett. 292, 143-153 (1998). [CrossRef]
  14. S. M. Ball and R. L. Jones, “Broadband cavity ring-down spectroscopy,” Chem. Rev. 103, 5239-5262 (2003). [CrossRef] [PubMed]
  15. A. Czyzewski, S. Chudzynski, K. Ernst, G. Karasinski, L. Kilianek, A. Pietruczuk, T. Stacewicz, K. Stelmaszczyk, B. Koch, and P. Rairoux, ”Cavity ring-down spectrography,” Opt. Commun. 191, 271-275 (2001). [CrossRef]
  16. S. Spuler and M. Linne, “Numerical analysis of beam propagation in pulsed cavity ring-down spectroscopy,” Appl. Opt. 41, 2858-2868 (2002). [CrossRef] [PubMed]
  17. J. T. Hodges, J. P. Looney, and R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10278-10288 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited