OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 35 — Dec. 10, 2009
  • pp: 6770–6780

Linear regression models and neural networks for the fast emulation of a molecular absorption code

Guillaume Euvrard, Isabelle Rivals, Thierry Huet, Sidonie Lefebvre, and Pierre Simoneau  »View Author Affiliations

Applied Optics, Vol. 48, Issue 35, pp. 6770-6780 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (715 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The background scene generator MATISSE, whose main functionality is to generate natural background radiance images, makes use of the so-called Correlated K (CK) model. It necessitates either loading or computing thousands of CK coefficients for each atmospheric profile. When the CK coefficients cannot be loaded, the computation time becomes prohibitive. The idea developed in this paper is to substitute fast approximate models for the exact CK generator; using the latter, a representative set of numerical examples is built and used to train linear or nonlinear regression models. The resulting models enable an accurate CK coefficient computation for all the profiles of an image in a reasonable time.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(110.2960) Imaging systems : Image analysis
(200.4260) Optics in computing : Neural networks
(010.1030) Atmospheric and oceanic optics : Absorption
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: July 22, 2009
Revised Manuscript: October 16, 2009
Manuscript Accepted: October 23, 2009
Published: December 3, 2009

Guillaume Euvrard, Isabelle Rivals, Thierry Huet, Sidonie Lefebvre, and Pierre Simoneau, "Linear regression models and neural networks for the fast emulation of a molecular absorption code," Appl. Opt. 48, 6770-6780 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Simoneau, K. Caillault, S. Fauqueux, T. Huet, L. Labarre, C. Malherbe, and B. Rosier, “MATISSE-v1.5 and MATISSE-v2.0: new developments and comparison with MIRAMER measurements,” Proc. SPIE 7300, 73000L (2009). [CrossRef]
  2. Q. Fu and K. N. Liou, “On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres,” J. Atmos. Sci. 49, 2139-2156 (1992). [CrossRef]
  3. A. A. Lacis and V. Oinas, “A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres,” J. Geophys. Res. 96, 9027-9063 (1991). [CrossRef]
  4. L. Ibgui and J. Hartmann, “An optimized line by line code for plume signature calculations--I: model and data,” J. Quant. Spectrosc. Radiat. Transfer 75, 273-295 (2002). [CrossRef]
  5. A. Berk, G. P. Anderson, P. K. Acharya, J. H. Chetwynd, L. S. Bernstein, E. P. Shettle, M. W. Matthew, and S. M. Adler-Golden, MODTRAN4 User's Manual (Air Force Research Laboratory, Space Vehicles Directorate, Air Force Materiel Command, Hanscom AFB, MA 01731-3010, 1999), p. 7.
  6. G. Li, Z. Lu, G. Guo, and K. Huang, “3D atmospheric modeling based on Modtran4,” WSEAS Trans. Syst. Control 3, 483-492(2008).
  7. P. Koepke, M. Hess, I. Schult, and E. P. Shettle, “Global Aerosol Dataset GADS,” Report 243 (Max-Planck-Institut für Meteorologie, Hamburg, 1997).
  8. F. Karcher, “Détermination des profils atmosphériques de référence pour la mesure de constituants par spectroscopie d'absorption,” Programmes prfl et rmel, Notes Internes CNRM (1990).
  9. L. Rothman, D. Jacquemart, A. Barbe, D. Benner, M. Birk, L. Brown, M. R. Carleer, C. Chackerian Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  10. I. Rivals and L. Personnaz, “MLPs (mono-layer polynomial and multi-layer perceptrons) for nonlinear modeling,” J. Mach. Learn. Res. 3, 1383-1398 (2003). [CrossRef]
  11. S. Chen, A. Billings, and W. Luo, “Orthogonal least-squares methods and their application to non-linear system identification,” Int. J. Control 50, 1873-1896 (1989). [CrossRef]
  12. R. Fletcher, Practical Methods of Optimization (Wiley, 1987).
  13. A. R. Barron, “Neural net approximation,” in Proceedings of Seventh Yale Workshop on Adaptive and Learning Systems (Yale University, 1992), pp. 69-72.
  14. E. D. Sontag, “Neural networks for control,” in Essays on Control: Perspectives in the Theory and its Applications, H. L. Trentelman and J. C. Willems, eds. (Birkhäuser, 1993), pp. 339-380.
  15. G. A. F. Seber, Linear Regression Analysis (Wiley, 1977).
  16. I. Rivals and L. Personnaz, “Construction of confidence intervals for neural networks based on least squares estimation,” Neural Networks 13, 463-484 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited