OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 35 — Dec. 10, 2009
  • pp: 6820–6826

Optimizing photophoresis and asymmetric force fields for grading of Brownian particles

Adrian Neild, Tuck Wah Ng, and Timothy Woods  »View Author Affiliations

Applied Optics, Vol. 48, Issue 35, pp. 6820-6826 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (823 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss a scheme that incorporates restricted spatial input location, orthogonal sort, and movement direction features, with particle sorting achieved by using an asymmetric potential cycled on and off, while movement is accomplished by photophoresis. Careful investigation has uncovered the odds of sorting between certain pairs of particle sizes to be solely dependent on radii in each phase of the process. This means that the most effective overall sorting can be achieved by maximizing the number of phases. This optimized approach is demonstrated using numerical simulation to permit grading of a range of nanometer-scale particle sizes.

© 2009 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(230.0230) Optical devices : Optical devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 18, 2009
Manuscript Accepted: November 17, 2009
Published: December 4, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Adrian Neild, Tuck Wah Ng, and Timothy Woods, "Optimizing photophoresis and asymmetric force fields for grading of Brownian particles," Appl. Opt. 48, 6820-6826 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421-424 (2003). [CrossRef] [PubMed]
  2. T. Imasaka, Y. Kawabata, T. Kaneta, and I. Ishidzu, “Optical chromatography,” Anal. Chem. 67, 1763-1765 (1995). [CrossRef]
  3. T. Cižmár, M. Siler, M. Sery, P. Zemanek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of sub-micron objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006). [CrossRef]
  4. J. Baumgartl, G. M. Hannappel, D. J. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 9, 1334-1336 (2009). [CrossRef] [PubMed]
  5. Y. Hayashi, S. Ashihara, T. Shimura, and K. Kuroda, “Simultaneous separation of polydisperse particles using an asymmetric nonperiodic optical stripe pattern,” Appl. Opt. 48, 1543-1552 (2009). [CrossRef] [PubMed]
  6. A. Neild, T. W. Ng, and W. M. S. Yii, “Optical sorting of dielectric Rayleigh spherical particles with scattering and standing waves,” Opt. Express 17, 5321-5329 (2009). [CrossRef] [PubMed]
  7. L. Gorre-Talini, S. Jeanjean, and P. Silberzan, “Sorting of brownian particles by the pulsed application of an asymmetric potential,” Phys. Rev. E 56, 2025-2034 (1997). [CrossRef]
  8. B. Yan, R. M. Miura, and Y.-D. Chen, “Direction reversal of fluctuation-induced biased Brownian motion on distorted ratchets,” J. Theor. Biol. 210, 141-150 (2001). [CrossRef] [PubMed]
  9. C. R. Doering, W. Horsthemke, and J. Riordan, “Non-equilibrium fluctuation induced transport,” Phys. Rev. Lett. 72, 2984-2987 (1994). [CrossRef] [PubMed]
  10. A. Haljas, R. Mankin, A. Sauga, and E. Reiter, “Anomalous mobility of Brownian particles in a tilted symmetric sawtooth potential,” Phys. Rev. E 70, 041107 (2004). [CrossRef]
  11. J. Rousselet, L. Salome, A. Ajdari, and J. Prost, “Directional motion of Brownian particles induced by a periodic asymmetric potential,” Nature 370, 446-447 (1994). [CrossRef] [PubMed]
  12. T. W. Ng, A. Neild, and P. Heeraman, “Continuous and fast sorting of Brownian particles,” Opt. Lett. 33, 584-586 (2008). [CrossRef] [PubMed]
  13. R. Di Leonardo, J. Leach, H. Mushfique, J. M. Cooper, G. Ruocco, and M. J. Padgett, “Multipoint holographic optical velocimetry in microfluidic systems,” Phys. Rev. Lett. 96, 134502 (2006). [CrossRef] [PubMed]
  14. P. Zemánek, A. Jonáš, L. Sramek, and M. Liška, “Optical trapping of Rayleigh particles using a Gaussian standing wave,” Opt. Commun. 151, 273-285 (1998). [CrossRef]
  15. P. Zemánek, A. Jonáš, P. Jákl, J. Ježek, M. Šery, and M. Liška, “Theoretical comparison of optical traps created by standing wave and single beam,” Opt. Commun. 220, 401-412 (2003). [CrossRef]
  16. A. Neild, S. Oberti, F. Beyeler, J. Dual, and B. J. Nelson, “A micro-particle positioning technique combining an ultrasonic manipulator and a microgripper,” J. Micromech. Microeng. 16, 1562-1570 (2006). [CrossRef]
  17. A. Neild, S. Oberti, and J. Dual, “Design, modeling and characterization of microfluidic devices for ultrasonic manipulation,” Sens. Actuators B 121, 452-461 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited