OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 36 — Dec. 20, 2009
  • pp: 6862–6869

Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform

María B. Bernini, Alejandro Federico, and Guillermo H. Kaufmann  »View Author Affiliations


Applied Optics, Vol. 48, Issue 36, pp. 6862-6869 (2009)
http://dx.doi.org/10.1364/AO.48.006862


View Full Text Article

Enhanced HTML    Acrobat PDF (1034 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We evaluate a data-driven technique to perform bias suppression and modulation normalization of fringe patterns. The proposed technique uses a bidimensional empirical mode decomposition method to decompose a fringe pattern in a set of intrinsic frequency modes and the partial Hilbert transform to characterize the local amplitude of the modes in order to perform the normalization. The performance of the technique is tested using computer simulated fringe patterns of different fringe densities and illu mination defects with high local variations of the modulation, and its advantages and limitations are discussed. Finally, the performance of the normalization approach in processing real data is also illustrated.

© 2009 Optical Society of America

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 2, 2009
Revised Manuscript: October 14, 2009
Manuscript Accepted: November 13, 2009
Published: December 10, 2009

Citation
María B. Bernini, Alejandro Federico, and Guillermo H. Kaufmann, "Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform," Appl. Opt. 48, 6862-6869 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-36-6862


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Malacara, M. Servin, and Z. Malacara, Interferogram Analysis for Optical Testing (Marcel Dekker, 1998).
  2. J. A. Quiroga, J. A. Gómez-Pedrero, and A. García-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun. 197, 43-51 (2001). [CrossRef]
  3. J. A. Quiroga and M. Servin, “Isotropic n-dimensional fringe pattern normalization,” Opt. Commun. 224, 221-227 (2003). [CrossRef]
  4. R. Legarda-Sáenz, W. Osten, and W. Jüptner, “Improvement of the regularized phase tracking technique for the processing of nonnormalized fringe patterns,” Appl. Opt. 41, 5519-5526(2002). [CrossRef] [PubMed]
  5. P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley, 2001).
  6. L. Watkins, S. Tan, and T. Barnes, “Determination of interferometer phase distributions by use of wavelets,” Opt. Lett. 24, 905-907 (1999). [CrossRef]
  7. C. A. Sciammarella and T. Kim, “Determination of strains from fringe patterns using space-frequency representations,” Opt. Eng. 42, 3182-3193 (2003). [CrossRef]
  8. A. Federico and G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry using a smoothed time-frequency distribution,” Appl. Opt. 42, 7066-7071 (2003). [CrossRef] [PubMed]
  9. A. Federico and G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by application of two-dimensional active contours called snakes,” Appl. Opt. 45, 1909-1916 (2006). [CrossRef] [PubMed]
  10. A. Federico and G. H. Kaufmann, “Local denoising of digital speckle pattern interferometry fringes using multiplicative correlation and weighted smoothing splines,” Appl. Opt. 44, 2728-2735 (2005). [CrossRef] [PubMed]
  11. A. Federico and G. H. Kaufmann, “Denoising in digital speckle pattern interferometry using wave atoms,” Opt. Lett. 32, 1232-1234 (2007). [CrossRef] [PubMed]
  12. J. A. Guerrero, J. L. Marroquin, M. Rivera, and J. A. Quiroga, “Adaptive monogenic filtering and normalization of ESPI fringe patterns,” Opt. Lett. 30, 3018-3020 (2005). [CrossRef] [PubMed]
  13. N. A. Ochoa and A. A. Silva-Moreno, “Normalization and noise-reduction algorithm for fringe patterns,” Opt. Commun. 270, 161-168 (2007). [CrossRef]
  14. M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt. 47, 2592-2598 (2008). [CrossRef] [PubMed]
  15. N. E. Huang, Z. Sheng, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A 454, 903-995 (1998). [CrossRef]
  16. C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE Signal Process Lett. 12, 701-704(2005). [CrossRef]
  17. H. T. Yang, Finite Element Structural Analysis (Prentice-Hall, 1986).
  18. Y. Tian, Y. Huang, and Y. Li, “Image zooming method using 2D EMD technique,” in Proceedings of IEEE 6th World Congress on Intelligent Control and Automation (IEEE, 2006), pp. 10036-10040. [CrossRef]
  19. K. Zeng and M. He, “A simple boundary process technique for empirical mode decomposition,” in Proceedings of IEEE Geoscience and Remote Sensing Symposium (IEEE, 2004), Vol. 6, pp. 4258-4261.
  20. G. Rilling, P. Flandrin, and P. Gonçalves, “On empirical mode decomposition and its algorithms,” in Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (IEEE, 2003) (http://perso.ens-lyon.fr/paulo.goncalves/index.php?page=Publications=emd-eurasip03#Communications).
  21. Z. Liu and S. Peng, “Boundary processing of bidimensional EMD using texture synthesis,” IEEE Signal Process Lett. 12, 33-36 (2005).
  22. M. Shen, H. Tang, and B. Li, “The modified bidimensional empirical mode decomposition for image denoising,” in Proceedings of IEEE 8th International Conference on Signal Processing (IEEE, 2006), pp. 16-20.
  23. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge Univ. Press, 1992), Chap. 13.
  24. S. L. Hahn, Hilbert Transforms in Signal Processing (Artech House, 1996).
  25. Z. Wang and A. C. Bovik, “A universal quality index,” IEEE Signal Process Lett. 9, 81-84 (2002). [CrossRef]
  26. P. D. Ruiz and G. H. Kaufmann, “Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry,” Opt. Eng. 37, 2395-2401(1998). [CrossRef]
  27. G. H. Kaufmann, “Nondestructive testing with thermal waves using phase shifted temporal speckle pattern interferometry,” Opt. Eng. 42, 2010-2014 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited