OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 36 — Dec. 20, 2009
  • pp: 6934–6939

Enhancement and suppression of terahertz emission by a Fabry–Perot cavity structure with a nonlinear optical crystal

Hideto Shirai, Eiji Kishimoto, Tatsuya Kokuhata, Hayato Miyagawa, Shyun Koshiba, Shunsuke Nakanishi, Hiroshi Itoh, Masanori Hangyo, Tae Geun Kim, and Noriaki Tsurumachi  »View Author Affiliations

Applied Optics, Vol. 48, Issue 36, pp. 6934-6939 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (551 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have fabricated Fabry–Perot (FP) cavities in the THz region with a ZnTe crystal as a cavity layer by a simple stacking method. We observed more than a three times enhancement of the THz emission intensity in the FP cavities compared with the bare ZnTe crystal at the frequencies of the resonant modes and stopband edges. On the other hand, suppression of the THz emission occurs at frequencies in the stopband. The enhancement and suppression of the THz emission are caused by the modification of the optical density of state in the FP cavities compared to the vacuum.

© 2009 Optical Society of America

OCIS Codes
(140.3948) Lasers and laser optics : Microcavity devices
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: September 14, 2009
Manuscript Accepted: November 13, 2009
Published: December 11, 2009

Hideto Shirai, Eiji Kishimoto, Tatsuya Kokuhata, Hayato Miyagawa, Shyun Koshiba, Shunsuke Nakanishi, Hiroshi Itoh, Masanori Hangyo, Tae Geun Kim, and Noriaki Tsurumachi, "Enhancement and suppression of terahertz emission by a Fabry-Perot cavity structure with a nonlinear optical crystal," Appl. Opt. 48, 6934-6939 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Inoue and T. Ohtaka, eds., Photonic Crystals: Physics, Fabrication, and Applications (Springer, 2004).
  2. E. Burstein and C. Weisbuch, eds., Confined Electrons and Photons (Plenum, 1995). [CrossRef]
  3. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 37 (1946). [CrossRef]
  4. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, “Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814-2816 (1990). [CrossRef]
  5. Y. Yamamoto, S. Machida, Y. Horikoshi, K. Igeta, and G. Björk, “Enhanced and inhibited spontaneous emission of free excitons in GaAs quantum wells in a microcavity,” Opt. Commun. 80, 337-342 (1991). [CrossRef]
  6. C. B. Poitras, M. Lipson, H. Du, M. A. Hahn, and T. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82, 4032-4034 (2003). [CrossRef]
  7. R. H. Jordan, L. J. Rothberg, A. Dodabalapur, and R. E. Slusher, “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, 1997-1999 (1996). [CrossRef]
  8. M. S. Weaver, D. G. Lidzey, T. A. Fisher, M. A. Pate, D. O'Brien, A. Bleyer, A. Tajbakhah, D. D. C. Bradley, M. S. Skolnick, and G. Hill, “Recent progress in polymers for electroluminescence: microcavity devices and electron transport polymers,” Thin Solid Films 273, 39-47 (1996). [CrossRef]
  9. A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517-520 (1993). [CrossRef] [PubMed]
  10. L. Pavesi, C. Mazzoleni, A. Tredicucci, and V. Pellegrini, “Controlled photon emission in porous silicon microcavities,” Appl. Phys. Lett. 67, 3280-3282 (1995). [CrossRef]
  11. S. Y. Lin, J. G. Fleming, E. Chow, J. Bur, K. K. Choi, and A. Goldberg, “Enhancement and suppression of thermal emission by a three-dimensional photonic crystal,” Phys. Rev. B 62, R2243-R2246 (2000). [CrossRef]
  12. H. Xin, Z. Wu, A. Young, and R. Ziolkowski, “THz thermal radiation enhancement using an electromagnetic crystal,” IEEE Trans. Anntena. Propag. 56, 2970-2980 (2008). [CrossRef]
  13. F. Cairo, F. De Martini, and D. Murra, “QED-vacuum confinement of inelastic quantum scattering at optical frequencies: A new perspective in Raman spectroscopy,” Phys. Rev. Lett. 70, 1413-1416 (1993). [CrossRef] [PubMed]
  14. A. Mazzei, S. Götzinger, L. de, S. Menezes, G. Zumofen, O. Benson, and V. Sandoghdar, “Controlled coupling of counterpropergating whispering-gallery modes by a single Rayleigh scatterer: A classical problem in a quantum optical light,” Phys. Rev. Lett. 99, 173603 (2007). [CrossRef] [PubMed]
  15. P. Bermel, A. Rodriguez, J. D. Joannopoulous, and M. Soljačić, “Tailoring optical nonlinearities via the Purcell effect,” Phys. Rev. Lett. 99, 053601 (2007). [CrossRef] [PubMed]
  16. R. Loudon, The Quantum Theory of Light (Oxford, 2000).
  17. K.Sakai, ed., Terahertz Optoelectronics (Springer, 2005). [CrossRef]
  18. M. Iida, M. Tani, P. Gu, K. Sakai, M. Watanabe, H. Kitahara, S. Kato, M. Suenaga, H. Kondo, and M. W. Takeda, “Terahertz-photomixing efficiency of a photoconductive antenna embedded in a three-dimensional photonic crystal,” Jpn. J. Appl. Phys. Part 2 42, L1442-L1445 (2003). [CrossRef]
  19. A. Nahata, A. S. Weling, T. F. Heinz, and C. Wu, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321-2323 (1996). [CrossRef]
  20. M. Hangyo, T. Nagashima, and S. Nashima, “Spectroscopy by pulsed terahertz radiation,” Meas. Sci. Technol. 13, 1727-1738 (2002). [CrossRef]
  21. N. Matsumoto, T. Nakagawa, A. Ando, Y. Sakabe, S. Kirihara, and Y. Miyamoto, “Study of multilayer ceramic photonic crystals in THz region,” Jpn. J. Appl. Phys. 44, 7111-7114(2005). [CrossRef]
  22. H. Němec, P. Kužel, F. Garet, and L. Duvillaret, “Time-domain terahertz study of defect formation in one-dimensional photonic crystals,” Appl. Opt. 43, 1965-1970 (2004). [CrossRef] [PubMed]
  23. D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291-293 (2002). [CrossRef]
  24. E. Kishimoto, M. Obayashi, Y. Hanafusa, H. Miyagawa, S. Koshiba, S. Nakanishi, H. Itoh, and N. Tsurumachi, “Transmission spectra of terahertz region hybrid one-dimensional photonic crystals,” in 2nd International Symposium on Portable Synchrotron Sources and Advanced Applications, Vol. 902 of AIP Conference Proceedings (American Institute of Physics, 2007), pp. 79-82. [CrossRef]
  25. T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Soild Films 515, 3887-3892 (2007). [CrossRef]
  26. M. Schall, H. Helm, and S. R. Keiding, “Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,” Int. J. Infrared Millimeter Waves 20, 595-604 (1999). [CrossRef]
  27. R. P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, and C. Weisbuch, “Impurity modes in one-dimensional periodic systems: The transition from photonic band gaps to microcavities,” Phys. Rev. A 48, 2246-2250 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited