OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 36 — Dec. 20, 2009
  • pp: 6961–6966

Linewidths below 100 kHz with external cavity diode lasers

Sebastian D. Saliba and Robert E. Scholten  »View Author Affiliations

Applied Optics, Vol. 48, Issue 36, pp. 6961-6966 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (539 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The linewidth of external cavity diode lasers (ECDLs) is an increasingly important characteristic for experiments in coherent optical communications and atomic physics. The Schawlow–Townes and time-averaged linewidths depend on free parameters of the design, such as cavity length, power, and grating characteristics. We show that the linewidth is also sensitive to the focus, set by the distance between the laser and the collimating lens, due to the effect on the external cavity backcoupling efficiency. By considering these factors, a simple ECDL can readily achieve linewidths below 100 kHz .

© 2009 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3410) Lasers and laser optics : Laser resonators
(140.3600) Lasers and laser optics : Lasers, tunable

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 7, 2009
Manuscript Accepted: November 18, 2009
Published: December 11, 2009

Sebastian D. Saliba and Robert E. Scholten, "Linewidths below 100 kHz with external cavity diode lasers," Appl. Opt. 48, 6961-6966 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ip, A. Lau, D. Barros, and J. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16, 753-791 (2008). [CrossRef]
  2. M. W. Fleming and A. Mooradian, “Spectral characteristics of external-cavity controlled semiconductor lasers,” IEEE J. Quantum Electron. 17, 44-59 (1981). [CrossRef]
  3. R. Wyatt and W. J. Devlin, “10 kHz linewidth 1.5 μm InGaAsP external cavity laser with 55 nm tuning range,” Electron. Lett. 19, 110-112 (1983). [CrossRef]
  4. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20 (1991). [CrossRef]
  5. K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098-1111 (1992). [CrossRef]
  6. K. G. Libbrecht, R. A. Boyd, P. A. Willems, T. L. Gustavson, and D. K. Kim, “Teaching physics with 670 nm diode lasers-construction of stabilized lasers and lithium cells,” Am. J. Phys. 63, 729-737 (1995). [CrossRef]
  7. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
  8. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, “A compact grating-stabilized diode laser system for atomic physics,” Opt. Commun. 117, 541-549 (1995). [CrossRef]
  9. A. S. Arnold, J. S. Wilson, and M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236-1239 (1998). [CrossRef]
  10. T. Hof, D. Fick, and H. J. Jänsch, “Application of diode lasers as a spectroscopic tool at 670 nm,” Opt. Commun. 124, 283-286(1996). [CrossRef]
  11. K. C. Harvey and C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910-912 (1991). [CrossRef]
  12. S. Lecomte, E. Fretel, G. Mileti, and P. Thomann, “Self-aligned extended-cavity diode laser stabilized by the Zeeman effect on the cesium D2 line,” Appl. Opt. 39, 1426-1429 (2000). [CrossRef]
  13. P. Zorabedian, “Tunable external-cavity semiconductor lasers,” in Tunable Lasers Handbook, F. J. Duarte, ed. (Academic, 1995), pp. 349-442.
  14. G. Galbács, “A review of applications and experimental improvements related to diode laser atomic spectroscopy,” Appl. Spectrosc. Rev. 41, 259-303 (2006).
  15. B. Mroziewicz, “External cavity wavelength tunable semiconductor lasers--a review,” Opto-Electron. Rev. 16, 347-366 (2008).
  16. W. R. Trutna, Jr., and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol. 11, 1279-1286 (1993). [CrossRef]
  17. C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477-4479 (2001). [CrossRef]
  18. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940-1949 (1958). [CrossRef]
  19. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18, 259-264 (1982). [CrossRef]
  20. O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett. 17, 589-591 (1981). [CrossRef]
  21. K. Kikuchi, T. Okoshi, and R. Arata, “Measurement of linewidth and FM-noise spectrum of 1.52 μm InGaAsP lasers,” Electron. Lett. 20, 535-536 (1984). [CrossRef]
  22. N. Olsson and J. Van Der Ziel, “Performance characteristics of 1.5 μm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol. 5, 510-515 (1987). [CrossRef]
  23. H. Loh, Y. J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Opt. 45, 9191-9197 (2006). [CrossRef]
  24. G. Genty, A. Grohn, H. Talvitie, M. Kaivola, and H. Ludvigsen, “Analysis of the linewidth of a grating-feedback GaAlAs laser,” IEEE J. Quantum Electron. 36, 1193-1198 (2000). [CrossRef]
  25. G. Genty, M. Kaivola, and H. Ludvigsen, “Measurements of linewidth variations within external-cavity modes of a grating-cavity laser,” Opt. Commun. 203, 295-300 (2002). [CrossRef]
  26. S. E. Harris and R. W. Wallace, “Acousto-optic tunable filter,” J. Opt. Soc. Am. 59, 744-747 (1969). [CrossRef]
  27. T. W. Hansch, “Repetitively pulsed tunable dye laser for high resolution spectroscopy,” Appl. Opt. 11, 895-898 (1972). [CrossRef]
  28. M. G. Littman and H. J. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17, 2224-2227(1978). [CrossRef]
  29. M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, and E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175-180 (2000). [CrossRef]
  30. We used an LT230P-B collimating tube from Thorlabs, Newton, New Jersey; an Ultima kinematic mount and Spectraphysics 33001FL02-330H gold-coated holographic grating from Newport, Irvine, California; a Melcor CP1.4-71-045L thermoelectric cooler from Laird Thermal North America, Cleveland, Ohio; an AE0203D04 piezoelectric actuator from NEC Tokin America, San Jose, California; and a DL-7140-201 diode from Sanyo, Tokyo, Japan. Note: certain commercial equipment, instruments, and materials are identified in to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement nor does it imply that the materials or equipment are necessarily the best available for the purpose.
  31. T. P. Dinneen, C. D. Wallace, and P. L. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277-282 (1992). [CrossRef]
  32. H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001-3003 (2004). [CrossRef]
  33. R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009). [CrossRef]
  34. H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen, “Passive frequency and intensity stabilization of extended-cavity diode lasers,” Rev. Sci. Instrum. 68, 1-7 (1997). [CrossRef]
  35. K. G. Libbrecht and J. L. Hall, “A low-noise high-speed diode laser current controller,” Rev. Sci. Instrum. 64, 2133-2135(1993). [CrossRef]
  36. DLC-202 ECDL controller from MOG Laboratories, Brunswick, Victoria, Australia.
  37. L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun. 201, 391-397 (2002). [CrossRef]
  38. H. Kogelnik and T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312-1392 (1966). [CrossRef]
  39. P. Zorabedian and W. R. Trutna, Jr, “Interference-filter-tuned, alignment-stabilized, semiconductor external-cavity laser,” Opt. Lett. 13, 826-828 (1988). [CrossRef]
  40. X. Baillard, A. Gauguet, S. Bize, P. Lemonde, P. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609-613(2006). [CrossRef]
  41. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited