OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 36 — Dec. 20, 2009
  • pp: 6980–6989

Stabilization of a self-referenced, prism-based, Cr:forsterite laser frequency comb using an intracavity prism

Karl A. Tillman, Rajesh Thapa, Kevin Knabe, Shun Wu, Jinkang Lim, Brian R. Washburn, and Kristan L. Corwin  »View Author Affiliations


Applied Optics, Vol. 48, Issue 36, pp. 6980-6989 (2009)
http://dx.doi.org/10.1364/AO.48.006980


View Full Text Article

Enhanced HTML    Acrobat PDF (1332 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The frequency comb from a prism-based Cr:forsterite laser has been frequency stabilized using intra cavity prism insertion and pump power modulation. Absolute frequency measurements of a CW fiber laser stabilized to the P(13) transition of acetylene demonstrate a fractional instability of 2 × 10 11 at a 1 s gate time, limited by a commercial Global Positioning System (GPS)-disciplined rubidium oscillator. Additionally, absolute frequency measurements made simultaneously using a second frequency comb indicate relative instabilities of 3 × 10 12 for both combs for a 1 s gate time. Estimations of the carrier-envelope offset frequency linewidth based on relative intensity noise and the response dynamics of the carrier-envelope offset to pump power changes confirm the observed linewidths.

© 2009 Optical Society of America

OCIS Codes
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(320.7090) Ultrafast optics : Ultrafast lasers
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 20, 2009
Revised Manuscript: November 25, 2009
Manuscript Accepted: November 26, 2009
Published: December 14, 2009

Citation
Karl A. Tillman, Rajesh Thapa, Kevin Knabe, Shun Wu, Jinkang Lim, Brian R. Washburn, and Kristan L. Corwin, "Stabilization of a self-referenced, prism-based, Cr:forsterite laser frequency comb using an intracavity prism," Appl. Opt. 48, 6980-6989 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-36-6980


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233-237 (2002). [CrossRef]
  2. L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10−19 level,” Science 303, 1843-1845 (2004). [CrossRef]
  3. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808-1812 (2008). [CrossRef]
  4. C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kartner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1,” Nature 452, 610-612 (2008). [CrossRef]
  5. I. Hartl, A. Ruehl, R. Thapa, H. A. McKay, B. K. Thomas, L. Fu, L. Dong, and M. E. Fermann, “Rapidly scanning Fourier transform spectrometer based on a GHz repetition rate Yb-fiber laser pair,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009).
  6. A. Bartels, D. Heinecke, and S. A. Diddams, “Passively mode-locked 10 GHz femtosecond Ti:sapphire laser,” Opt. Lett. 33, 1905-1907 (2008). [CrossRef]
  7. V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagishi, H. Anzai, and Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040-1042 (1988). [CrossRef]
  8. A. Seas, V. Petricevic, and R. R. Alfano, “Continuous-wave mode-locked operation of a chromium-doped forsterite laser,” Opt. Lett. 16, 1668-1670 (1991). [CrossRef]
  9. A. Seas, V. Petricevic, and R. R. Alfano, “Generation of sub-100 fs pulses from a CW mode-locked chromium-doped forsterite laser,” Opt. Lett. 17, 937-939 (1992). [CrossRef]
  10. A. Sennaroglu, T. J. Carrig, and C. R. Pollock, “Femtosecond pulse generation by using an additive-pulse mode-locked chromium-doped forsterite laser operated at 77 K,” Opt. Lett. 17, 1216-1218 (1992). [CrossRef]
  11. A. Sennaroglu, C. R. Pollock, and H. Nathel, “Generation of 48 fs pulses and measurement of crystal Dispersion by using a regeneratively initiated self-mode-locked chromium-doped forsterite laser,” Opt. Lett. 18, 826-828 (1993). [CrossRef]
  12. Y. Pang, V. Yanovsky, F. Wise, and B. I. Minkov, “Self-mode-locked Cr-forsterite laser,” Opt. Lett. 18, 1168-1170 (1993). [CrossRef]
  13. C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kartner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr:forsterite laser generating 14 fs pulses at 1.3 μm,” Opt. Lett. 26, 292-294 (2001). [CrossRef]
  14. A. Robertson, H. Fuchs, U. Ernst, R. Wallenstein, V. Scheuer, and T. Tschudi, “Prismless femtosecond Cr:forsterite laser,” J. Opt. Soc. Am. B 17, 668-671 (2000). [CrossRef]
  15. I. Thomann, A. Bartels, K. L. Corwin, N. R. Newbury, L. Hollberg, S. A. Diddams, J. W. Nicholson, and M. F. Yan, “420 MHz Cr:forsterite femtosecond ring laser and continuum generation in the 1-2 μm range,” Opt. Lett. 28, 1368-1370(2003). [CrossRef]
  16. Z. Wei, Y. Kaboyashi, and K. Torizuka, “Passive synchronization between femtosecond Ti:sapphire and Cr:forsterite lasers,” Appl. Phys. B 74, S171-S176 (2002). [CrossRef]
  17. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28, 947-949 (2003). [CrossRef]
  18. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, “Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33, 2449-2451 (2008). [CrossRef]
  19. K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, and M. E. Yan, “Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser,” Opt. Lett. 30, 932-934 (2005). [CrossRef]
  20. K. L. Corwin, I. Thomann, T. Dennis, R. W. Fox, W. Swann, E. A. Curtis, C. W. Oates, G. Wilpers, A. Bartels, S. L. Gilbert, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, and M. F. Yan, “Absolute-frequency measurements with a stabilized near-infrared optical frequency comb from a Cr:forsterite laser,” Opt. Lett. 29, 397-399 (2004). [CrossRef]
  21. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635-639 (2000). [CrossRef]
  22. F. W. Helbing, G. Steinmayer, U. Keller, R. S. Windeler, J. Stenger, and H. R. Telle, “Carrier-envelope offset dynamics of mode-locked lasers,” Opt. Lett. 27, 194-196 (2002). [CrossRef]
  23. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201-217 (1986). [CrossRef]
  24. B. R. Washburn, W. C. Swann, and N. R. Newbury, “Response dynamics of the frequency comb output from a femtosecond fiber laser,” Opt. Express 13, 10622-10633 (2005). [CrossRef]
  25. K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, and J. Ye, “Detailed studies and control of intensity-related dynamics of femtosecond frequency combs from mode-locked Ti:sapphire lasers,” IEEE J. Sel. Top. Quantum Electron. 9, 1018-1024 (2003). [CrossRef]
  26. K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, and J. Ye, “Intensity-related dynamics of femtosecond frequency combs,” Opt. Lett. 28, 851-853 (2003). [CrossRef]
  27. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944-946 (2003). [CrossRef]
  28. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions,” Appl. Phys. B 86, 219-227 (2007). [CrossRef]
  29. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jorgensen, and T. Veng, “All-fiber, octave-spanning supercontinuum,” Opt. Lett. 28, 643-645 (2003). [CrossRef]
  30. P. T. Systems, Operators Manual (2006), www.ptsyst.com/GPS10RB-B.pdf.
  31. F. Couny, P. S. Light, and F. Benabid, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574-3576 (2006). [CrossRef]
  32. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31, 2489-2491 (2006). [CrossRef]
  33. K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on C122H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017-16026 (2009). [CrossRef]
  34. S. T. Dawkins, J. J. McFerran, and A. N. Luiten, “Considerations on the measurement of the stability of oscillators with frequency counters,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 918-925 (2007). [CrossRef]
  35. wJ. A. Barnes and D. W. Allan, “Variances based on data with dead time between the measurements,” in Proceedings of the 19th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting (National Bureau of Standards, 1987).
  36. J. A. Barnes and D. W. Allan, “A statistical model of flicker noise,” Proc. IEEE 54, 176-178 (1966). [CrossRef]
  37. J. K. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. S. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17, 14115-14120 (2009). [CrossRef]
  38. R. P. Scott, T. D. Mulder, K. A. Baker, and B. H. Kolner, “Amplitude and phase noise sensitivity of modelocked Ti:sapphire lasers in terms of a complex noise transfer function,” Opt. Express 15, 9090-9095 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited