OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: 704–707

Thermoacoustic optical path length stabilization in a single-mode optical fiber

Wojciech Lewoczko-Adamczyk, Max Schiemangk, Holger Müller, and Achim Peters  »View Author Affiliations


Applied Optics, Vol. 48, Issue 4, pp. 704-707 (2009)
http://dx.doi.org/10.1364/AO.48.000704


View Full Text Article

Enhanced HTML    Acrobat PDF (615 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simple technique to actively stabilize the optical path length in an optical fiber. A part of the fiber is coated with a thin, electrically conductive layer, which acts as a heater. The optical path length is thus modified by temperature-dependent changes in the refractive index and the mechanical length of the fiber. For the first time, we measure the dynamic response of the optical path length to the periodic changes of temperature and find it to be in agreement with our former theoretical prediction. The fiber’s response to the temperature changes is determined by the speed of sound in quartz rather than by slow thermal diffusion. Making use of this fact, we succeeded in actively stabilizing the optical path length with a closed-loop bandwidth of 3.8 kHz .

© 2009 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.4080) Fiber optics and optical communications : Modulation

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 6, 2008
Manuscript Accepted: November 28, 2008
Published: January 21, 2009

Citation
Wojciech Lewoczko-Adamczyk, Max Schiemangk, Holger Müller, and Achim Peters, "Thermoacoustic optical path length stabilization in a single-mode optical fiber," Appl. Opt. 48, 704-707 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-4-704


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Optical fiber acoustic sensor,” Appl. Opt. 16, 1761-1762 (1977). [CrossRef] [PubMed]
  2. T. Musha, J. Kamimura, and M. Nakazawa, “Optical phase fluctuations thermally induced in a single-mode optical fiber,” Appl. Opt. 21, 694-698 (1982). [CrossRef] [PubMed]
  3. L. S. Schuetz, J. H. Cole, J. Jarzynski, N. Lagakos, and J. A. Bucaro, “Dynamic thermal response of single-mode optical fiber for interferometric sensors,” Appl. Opt. 22, 478-483 (1983). [CrossRef] [PubMed]
  4. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799-3802 (1999). [CrossRef]
  5. M. Eichenseer, J. V. Zanthier, and H. Walther, “Common-mode-free frequency comparison of lasers with relative frequency stability at the millihertz level,” Opt. Lett. 30, 1662-1664 (2005). [CrossRef] [PubMed]
  6. M. Notcutt, L.-S. Ma, J. Ye, and J. L. Hall “Simple and compact 1 Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30, 1815-1817 (2005). [CrossRef] [PubMed]
  7. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233-237 (2002). [CrossRef] [PubMed]
  8. H. Müller, S. Herrmann, C. Braxmaier, S. Schiller, and A. Peters “Modern Michelson-Morley experiment using cryogenic optical resonators,” Phys. Rev. Lett. 91, 020401(2003). [CrossRef] [PubMed]
  9. K. Imai, Y. Zhao, M. Kourogi, B. Widiyatmoko, and M. Ohtsu, “Accuracy of optical comb generation in optical fiber,” Opt. Lett. 24, 214-216 (1999). [CrossRef]
  10. L.-S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777-1779 (1994). [CrossRef] [PubMed]
  11. H. Müller, A. Peters, and C. Braxmaier, “Optical fibers with interferometric path length stability by controlled heating for transmission of optical signals and as components in frequency standards,” Appl. Phys. B 84, 401-408 (2006). [CrossRef]
  12. R. Hughes and R. Priest, “Thermally induced optical phase effects in fiber optic sensors,” Appl. Opt. 19, 1477-1483(1980). [CrossRef] [PubMed]
  13. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983). [CrossRef]
  14. M. J. Matthewson, C. R. Kurkjian, and J. R. Hamblin, “Acid stripping of fused silica optical fibers without strength degradation,” J. Lightwave Technol. 15, 490-497 (1997). [CrossRef]
  15. S. J. Petuchowski, G. H. Sigel, and T. G. Giallorenzi, “Single-mode-fibre point and extended temperature sensors,” Electron. Lett. 18, 814-815 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited