OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: 743–747

Wavelength modulation waveforms in laser photoacoustic spectroscopy

Jaakko Saarela, Juha Toivonen, Albert Manninen, Tapio Sorvajärvi, and Rolf Hernberg  »View Author Affiliations


Applied Optics, Vol. 48, Issue 4, pp. 743-747 (2009)
http://dx.doi.org/10.1364/AO.48.000743


View Full Text Article

Enhanced HTML    Acrobat PDF (326 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Different wavelength modulation waveforms were studied comprehensively in tunable diode laser photoacoustic spectroscopy. The generation of the photoacoustic signal was studied by way of simulations and experiments. A cantilever-enhanced photoacoustic detector and CO 2 sample gas were used in the experiments. The modulation waveforms compared in this study were sinusoidal, triangular, shaped, and quasi-square waves. All four waveforms allow background-free detection of trace gases. Compared to the conventionally used sinusoidal modulation, the triangular, shaped, and quasi-square waves enhanced the photoacoustic signal by factors of 1.12, 1.42, and 1.57, respectively.

© 2009 Optical Society of America

OCIS Codes
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6380) Spectroscopy : Spectroscopy, modulation
(300.6430) Spectroscopy : Spectroscopy, photothermal

ToC Category:
Spectroscopy

History
Original Manuscript: October 20, 2008
Manuscript Accepted: December 5, 2008
Published: January 23, 2009

Citation
Jaakko Saarela, Juha Toivonen, Albert Manninen, Tapio Sorvajärvi, and Rolf Hernberg, "Wavelength modulation waveforms in laser photoacoustic spectroscopy," Appl. Opt. 48, 743-747 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-4-743


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vib. Spectrosc. 48, 16-21 (2008). [CrossRef]
  2. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165-176(2008). [CrossRef]
  3. M. E. Webber, M. Pushkarsky, and C. K. N. Patel, “Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers,” Appl. Opt. 42, 2119-2126(2003). [CrossRef] [PubMed]
  4. T. Fink, S. Büscher, R. Gäbler, Q. Yu, A. Dax, and W. Urban, “An improved CO2 laser intracavity photoacoustic spectrometer for trace gas analysis,” Rev. Sci. Instrum. 67, 4000-4004(1996). [CrossRef]
  5. V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Cantilever enhanced photoacoustic detection of carbon dioxide using a tunable diode laser source,” Appl. Phys. B 86, 451-454(2007). [CrossRef]
  6. T. Iguchi, “Modulation waveforms for second-harmonic detection with tunable diode lasers,” J. Opt. Soc. Am. B 3, 419-423(1986). [CrossRef]
  7. J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, “High sensitivity in gas analysis with photoacoustic detection,” Microchem. J. 76, 151-159 (2004). [CrossRef]
  8. V. S. Letokhov and V. P. Zharov, Laser Optoacoustic Spectroscopy (Springer-Verlag, 1986).
  9. H. Cattaneo, T. Laurila, and R. Hernberg, “Photoacoustic detection of oxygen using cantilever enhanced technique,” Appl. Phys. B 85, 337-341 (2006). [CrossRef]
  10. G. Wysocki, A. Kosterev, and F. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ=2 μm,” Appl. Phys. B 85, 301-306(2006). [CrossRef]
  11. J.-P. Besson, S. Schilt, E. Rochat, and L. Thévenaz, “Ammonia trace measurements at ppb level based on near-IR photoacoustic spectroscopy,” Appl. Phys. B 85, 323-328 (2006). [CrossRef]
  12. R. Lewicki, G. Wysocki, A. Kosterev, and F. Tittel, “Carbon dioxide and ammonia detection using 2 μm diode laser based quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. B 87, 157-162 (2007). [CrossRef]
  13. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  14. O. Svelto, “Inhomogeneous broadening,” in Principles of Lasers, 4th ed. (Springer, 1998), pp. 48-49.
  15. A. Fried, J. Drummond, B. Henry, and J. Fox, “Versatile integrated tunable diode laser system for high precision: application for ambient measurements of OCS,” Appl. Opt. 30, 1916-1932 (1991). [CrossRef] [PubMed]
  16. M. Ito and T. Kimura, “Stationary and transient thermal properties of semiconductor laser diodes,” IEEE J. Quantum Electron. 17, 787-795 (1981). [CrossRef]
  17. W. Li, X. Li, and W.-P. Huang, “A traveling-wave model of laser diodes with consideration for thermal effects,” Opt. Quantum Electron. 36, 709-724 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited