OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: 748–757

Development of a 1.6 μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO 2 profile

Daisuke Sakaizawa, Chikao Nagasawa, Tomohiro Nagai, Makoto Abo, Yasukuni Shibata, Masahisa Nakazato, and Tetsu Sakai  »View Author Affiliations

Applied Optics, Vol. 48, Issue 4, pp. 748-757 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1004 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a 1.6 μm carbon dioxide ( CO 2 ) differential absorption lidar utilizing a quasi-phase-matching optical parametric oscillator (OPO) and a photon-counting detector. The operating wavelengths were chosen based on their low interference from water vapor and low temperature sensitivity. The online wavelength was in the ( 30012 0001 ) band of CO 2 , which was insensitive to atmospheric temperature. The established OPO laser achieved a 10 mJ , 200 Hz repetition rate at the online and offline wavelengths. Our observations confirmed the statistical error of 2% with 5 h of accumulation for the CO 2 density profile less than 5.2 km . Also, the statistical error of 1% at an altitude of 2 km was demonstrated. The results of the vertical CO 2 concentrations acquired using a 1.6 μm wavelength are presented.

© 2009 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar

ToC Category:
Remote Sensing and Sensors

Original Manuscript: June 20, 2008
Revised Manuscript: December 5, 2008
Manuscript Accepted: December 7, 2008
Published: January 23, 2009

Daisuke Sakaizawa, Chikao Nagasawa, Tomohiro Nagai, Makoto Abo, Yasukuni Shibata, Masahisa Nakazato, and Tetsu Sakai, "Development of a 1.6 μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile," Appl. Opt. 48, 748-757 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. B. Stephens, K. R. Gurney, P. P. Tans, C. Sweeney, W. Peters, L. Bruhwiler, P. Ciais, M. Ramonet, P. Bousquet, T. Nakazawa, S. Aoki, T. Machida, G. Inoue, N. Vinnichenko, J. Lloyd, A. Jordan, M. Heimann, O. Shibistova, R. L. Langenfelds, L. P. Steele, R. J. Francey, and A. S. Denning, “Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2,” Science 316, 1732-1735 (2007). [CrossRef] [PubMed]
  2. P. J. Rayner and D. M. O'Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175-178 (2001). [CrossRef]
  3. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2,” Appl. Opt. 43, 5092-5099 (2004). [CrossRef] [PubMed]
  4. G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47, 944-956 (2008). [CrossRef] [PubMed]
  5. F. Gibert, P. H. Flamant, D. Bruneau, and C. Loth, “Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer,” Appl. Opt. 45, 4448-4458 (2006). [CrossRef] [PubMed]
  6. F. Gibert, P. H. Flamant, J. Cuesta, and D. Bruneau, “Vertical 2 μm heterodyne differential absorption lidar measurements of mean CO2 mixing ratio in the toroposhpere,” J. Atmos. Ocean. Technol. 25, 1477-1499 (2008). [CrossRef]
  7. A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295-302 (2008). [CrossRef]
  8. J. Burris, A. Andrews, H. Riris, J. Abshire, A. Gates, M. Krainak, and X. Sun, “Profiling CO2 within the planetary boundary layer,” in Proc. 23rd Int. Laser Radar Conf. (2006), Vol. 1, pp. 531-533.
  9. J. Burris and D. Richter, “Tunable infrared radiation for atmospheric profiling,” J. Appl. Remote Sens. 2, 023527 (2008). [CrossRef]
  10. P. L. Voss, K. G. Köprülü, S.-K. Choi, S. Dugan, and P. Kumar, “14 MHz rate photon counting with room temperature InGaAs/InP avalanche photodiodes,” J. Mod. Opt. 51, 1369-1379 (2004).
  11. G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: current performance,” J. Modern Opt. 51, 1381-1398 (2004).
  12. S. Ismail and E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603-3615 (1989). [CrossRef] [PubMed]
  13. K. L. Letchworth and D. C. Benner, “Rapid and accurate calculation of the Voigt function,” J. Quant. Spectrosc. Radiat. Transfer 107, 173-192 (2007). [CrossRef]
  14. R. T. Menties and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements,” Appl. Opt. 42, 6569-6577 (2003). [CrossRef]
  15. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  16. R. A. Toth, L. R. Brown, C. E. Miller, V. M. Devi, and D. C. Benner, “Line strengths of 12C16O2: 4550−7000 cm−1,” J. Mol. Spectrosc. 239, 221-242 (2006). [CrossRef]
  17. R. A. Toth, C. E. MillerV. M. Devi, D. C. Benner, and L. R. Brown, “Air-broadened half width and pressure shift coefficients of 12C16O2 bands: 4750-7000 cm−1,” J. Mol. Spectrosc. 246, 133-157 (2007). [CrossRef]
  18. Y. Liu, S. Kurimura, M. Nakamura, S. Takekawa, and K. Kitamura, “Effective aperture in periodically poled Mg-doped stoichiometric LitaO3 for quasi-phase-matched optical parametric oscillation,” Jpn. J. Appl. Phys. 45, 4064-4067 (2006). [CrossRef]
  19. H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm×5 mm aperture,” Opt. Lett. 30, 2918-2920 (2005). [CrossRef] [PubMed]
  20. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, “52 mJ narrow-bandwidth degenerated optical parametric system with a large-aperture periodically poled MgO:LiNbO3 device,” Opt. Lett. 31, 3149-3151 (2006). [CrossRef] [PubMed]
  21. Oxide Corporation., Yamanashi 408-0302, Japan; http://www.opt-oxide.com/english/product/lita03.html.
  22. S. Takekawa, National Institute for Materials Science, Tsukuba, Japan (personal communication, 2006).
  23. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983). [CrossRef]
  24. T. Walther, M. P. Larsen, and E. S. Fry, “Generation of Fourier-transform-limited 35 ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40, 3046-3050 (2001). [CrossRef]
  25. G. Megie and R. T. Menties, “Complementarity of UV and IR differential absorption lidar for global measurements of atmospheric species,” Appl. Opt. 19, 1173-1183(1980). [CrossRef] [PubMed]
  26. D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and M. Nakazato, “Measurement of the pressure-induced broadening and shift coefficients around 1.6 μm carbon dioxide absorption lines for differential absorption lidar,” Jpn. J. Appl. Phys. 47, 325-328 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited