OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: 770–777

Temporal wavefront stability of an ultrafast high-power laser beam

Juan M. Bueno, Brian Vohnsen, Luis Roso, and Pablo Artal  »View Author Affiliations


Applied Optics, Vol. 48, Issue 4, pp. 770-777 (2009)
http://dx.doi.org/10.1364/AO.48.000770


View Full Text Article

Enhanced HTML    Acrobat PDF (744 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We measured the temporal dynamics of wavefront aberrations in a beam produced by a commercial ultrafast high-power laser with a research-prototype real-time Hartmann–Shack wavefront sensor. Measurements were performed at two different temporal rates for a 7 mm diameter. Results showed that changes in the wavefront aberrations were always lower than 1%. The main contribution to the total root-mean-square (RMS) wavefront error was due to the effects of low order aberrations (defocus and astigmatism), which persisted even after cavity realignment. The potential improvement in the beam quality after correction of the different aberration modes was also shown. Real-time measurements of laser aberrations while modifying cavity parameters might be a useful tool to improve the beam quality.

© 2009 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(140.0140) Lasers and laser optics : Lasers and laser optics
(220.1010) Optical design and fabrication : Aberrations (global)
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 5, 2008
Revised Manuscript: December 18, 2008
Manuscript Accepted: December 19, 2008
Published: January 26, 2009

Citation
Juan M. Bueno, Brian Vohnsen, Luis Roso, and Pablo Artal, "Temporal wavefront stability of an ultrafast high-power laser beam," Appl. Opt. 48, 770-777 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-4-770


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H.-M. Heuck, U. Wittrock, J. Fils, S. Borneis, K. Witte, U. Eisenbart, D. Javorkova, V. Bagnoud, S. Götte, A. Tauschwitz, and E. Onkels, “Adaptive optics at the PHELIX laser,” Proc. SPIE 6584, 658402 (2007). [CrossRef]
  2. J.-P. Zou, A.-M. Sautivet, J. Fils, L. Martin, K. Abdeli, C. Sauteret, and B. Wattellier, “Optimization of the dynamic wavefront control of a pulsed kilojoule/nanosecond-petawatt laser facility,” Appl. Opt. 47, 704-710 (2008). [CrossRef] [PubMed]
  3. W. Koechner, “Thermal effect in laser rods,” in Solid-State Laser Engineering, D. L. MacAdam, ed. (Springer-Verlag, 1976), pp. 365-382.
  4. U. J. Greiner and H. H. Klingenberg, “Thermal lens correction of a diode-pumped Nd:YAG laser of high TEM00 power by an adjustable-curvature mirror,” Opt. Lett. 19, 1207-1209 (1994). [CrossRef] [PubMed]
  5. K. Akaoka, S. Harayama, K. Tei, Y. Maruyama, and T. Arisawa, ”Close loop wavefront correction of Ti:sapphire chirped pulse amplification laser beam,” Proc. SPIE 3265, 219-225 (1998). [CrossRef]
  6. B. Schäfer, K. Mann, G. Marowsky, C. P. Hauri, J. Biegert, and U. Keller, “Characterization, wavefront reconstruction and propagation of ultra-broadband laser pulses from Hartmann-Shack measurements,” Proc. SPIE 5918, 59180P (2005). [CrossRef]
  7. B. Schäfer, M. Lübbecke, and K. Mann, “Propagation of laser beams from Hartmann-Shack measurements,” Proc. SPIE 6343, 634348 (2006). [CrossRef]
  8. A. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma instability suppression,” Phys. Rev. Lett. 53, 1057-1059(1984). [CrossRef]
  9. J. Garnier, “Statistics of the hot spots of smoothed beams produced by random phase plates revisited,” Phys. Plasmas 6, 1601-1610 (1999). [CrossRef]
  10. R. Lehmberg and S. Obenschain, “Use of induced spatial incoherence for uniform illumination of laser fusion targets,” Opt. Commun. 46, 27-31 (1983). [CrossRef]
  11. D. Veron, G. Thiell, and C. Gouédard, “Optical smoothing of the high power PHEBUS Nd-glass laser using the multimode optical fiber technique,” Opt. Commun. 97, 259-271(1993). [CrossRef]
  12. J. C. Chanteloup, F. Druon, M. Nantel, A. Maksimchuk, and G. Mourou, “Single-shot wavefront measurements of high-intensity ultrashort laser pulses with a three-wave interferometer,” Opt. Lett. 23, 621-623 (1998). [CrossRef]
  13. S. Matsuoka and K. Yamakawa, “Wavefront measurements of terawatt-class ultrashort laser pulses by the Fresnel phase-retrieval method,” J. Opt. Soc. Am. B 17, 663-667(2000). [CrossRef]
  14. P. Yang, S. J. Hu, X. D. Yang, S. Q. Chen, W. Yang, X. Zhang, and B. Xu, “Test and analysis of the time and space characteristics of phase aberration in a diode-side-pumped Nd:YAG laser,” Proc. SPIE 6018, 182-191 (2005).
  15. W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10, 550-555 (2002). [PubMed]
  16. W. Lubeigt, P. van Grol, G. Valentine, and D. Burns, “Use of intracavity adaptive optics in solid-state laser operation at 1 μm,” Adaptive Optics for Industry and Medicine: Proceedings of the 4th International Workshop, Vol. 102 (Springer, 2005), pp. 217-227. [CrossRef]
  17. H.-M. Heuck, U. Wittrock, C. Häfner, S. Borneis, E. Gaul, T. Kühl, and P. Wiewior, “Wavefront measurement and adaptive optics at the PHELIX laser,” Adaptive Optics for Industry and Medicine: Proceedings of the 4th International Workshop, Vol. 102 (Springer, 2005), pp. 283-290. [CrossRef]
  18. W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16, 10943-10955 (2008). [CrossRef] [PubMed]
  19. I. Ghozeil, “Hartmann and other screen tests,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1992), pp. 367-396.
  20. P. M. Prieto, F. Vargas, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388-1398 (2000). [CrossRef]
  21. J. C. Wyant and K. Creath, “Basic wavefront aberration theory for optical metrology,” in Applied Optics and Optical Engineering, B. Shannon and J. C. Wyant, ed. (Academic, 1992), Chap. 1, Vol. XI, pp. 1-39.
  22. J. Lee, R. V. Shack, and M. R. Descour, “Sorting method to extend the dynamic range of the Shack-Hartmann wavefront sensor,” Appl. Opt. 44, 4838-4845 (2005). [CrossRef] [PubMed]
  23. T. A. Planchon, J.-P. Rousseau, F. Burgy, G. Chériaux and J.-P. Chambaret, “Adaptive wavefront correction on a 100 TW/10 Hz chirped pulse amplification laser and effect of residual wavefront on beam propagation,” Opt. Commun. 252, 222-228 (2005). [CrossRef]
  24. T. M. Jeong, W. Choi, N. Hafz, J. H. Sung, S. K. Lee, D.-K. Ko, and J. Lee, “Wavefront correction and customization of focal spot of 100 TW Ti:sapphire laser system,” Jpn. J. Appl. Phys. 46, 7724-7730 (2007). [CrossRef]
  25. S.-W. Bahk, P. Rousseau, T. A. Planchon, V. Chvykov, G. Kalintchenko, A. Maksimchuk, G. A. Mourou and V. Yanovsky, “Generation and characterization of the highest laser intensities (1022 W/cm2),” Opt. Lett. 29, 2837-2839 (2004). [CrossRef]
  26. B. Wattellier, J. Fuchs, J-P. Zou, K. Abdeli, H. Pépin and C. Haefner, “Repetition rate increase and diffraction limited focal spots for a nonthermal-equilibrium 100 TW Nd:glass laser chain by use of adaptive optics,” Opt. Lett. 29, 2494-2496 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited