OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: 778–785

Surface plasmon resonance of metal nanoparticles sandwiched between dielectric layers: theoretical modelling

Maria L. Protopapa  »View Author Affiliations


Applied Optics, Vol. 48, Issue 4, pp. 778-785 (2009)
http://dx.doi.org/10.1364/AO.48.000778


View Full Text Article

Enhanced HTML    Acrobat PDF (721 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Composite films consisting of a ceramic matrix with embedded metal nanoparticles have received increased interest due to their numerous potential applications in the field of optics and optoelectronics. Numerous studies have been dedicated to the fabrication of these composite materials and it has been shown that nanocermet films can be obtained by successive deposition of alternate dielectric and metal films of thicknesses opportunely chosen. In this case, stacks of dielectric layers alternated with layers of metal nanoclusters (NCs) are obtained. However, until now, optical characterization of these kinds of multilayer stack has been used to retrieve mainly qualitative information on the dimension, shape, and geometric distribution of nanoparticles inside the dielectric matrix. An easy-to-handle model that quantitatively links the optical properties to the main features of the NCs embedded in the matrix is presented. This model can be applied to multilayer stacks of dielectric layers alternated with metal NC layers and is shown to be a valid alternative to a recently published model [ Nanotechnology 19, 125709 (2008)] that was applied to the case of a three-layer structure (dielectric/metal:dielectric/ dielectric).

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties
(160.4236) Materials : Nanomaterials

ToC Category:
Thin Films

History
Original Manuscript: September 11, 2008
Revised Manuscript: December 3, 2008
Manuscript Accepted: December 11, 2008
Published: January 26, 2009

Citation
Maria L. Protopapa, "Surface plasmon resonance of metal nanoparticles sandwiched between dielectric layers: theoretical modelling," Appl. Opt. 48, 778-785 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-4-778


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. N. Afonso, J. Solis, R. Serna, J. Gonzalo, J. M. Ballestros, and J. C. G. de Sande, “Pulsed laser deposition of nanocomposite thin films for photonic applications,” Proc. SPIE 3618, 453-464 (1999). [CrossRef]
  2. A. Polman, E. Snoeks, G. N. van den Hoven, M. L. Brongersma, R. Serna, J. H. Shin, P. Kik, and E. Radius, “Ion beam synthesis of planar opto-electronic devices,” Nucl. Instrum. Methods Phys. Res. B 106, 393-399 (1995). [CrossRef]
  3. R. Joerger, R. Gampp, A. Heinzel, W. Graf, M. Kohl, P. Gantenbein, and P. Oelhafen, “Optical properties of inhomogeneous media,” Solar Energy Mater. Sol. Cells 54, 351-361 (1998). [CrossRef]
  4. M. J. Bloemer and J. W. Haus, “Versatile waveguide polarizer incorporating an ultrathin discontinuous silver film,” Appl. Phys. Lett. 61, 1619-1621 (1992). [CrossRef]
  5. A. Podlipensky, J. Lange, G. Seiffert, H. Graener, and I. Cravetchi, “Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass,” Opt. Lett. 28, 716-718 (2003). [CrossRef] [PubMed]
  6. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  7. H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, and F. Faupel, “Plasmonic properties of Ag nanoclusters in various polymer matrices,” Nanotechnology 17, 3499-3505(2006). [CrossRef] [PubMed]
  8. J. Toudert, S. Camelio, D. Babonneau, M. F. Denanot, T. Girardeau, J. P. Espinos, F. Yubero, and A. R. Gonzalez-Elipe, “Morphology and surface-plasmon resonance of silver nanoparticles sandwiched between Si3N4 and BN layers,” J. Appl. Phys. 98, 114316 (2005). [CrossRef]
  9. S. Camelio, J. Toudert, D. Bobonneau, and T. Girardeau, “Tailoring of the optical properties of Ag:Si3N4 nanocermets by changes of the cluster morphology,” Appl. Phys. B 80, 89-96 (2005). [CrossRef]
  10. S. K. Mandal, R. K. Roy, and A. K. Pal, “Effect of particle shape distribution on the surface plasmon resonance of Ag-SiO2 nanocomposite thin films,” J. Phys. D 36, 261-265 (2003). [CrossRef]
  11. J. Gonzalo, R. Serna, J. Solís, D. Babonneau, and C. N. Afonso, “Morphological and interaction effects on the surface plasmon resonance of metal nanoparticles,” J. Phys. Condens. Matter 15, S3001-S3010 (2003). [CrossRef]
  12. J. P. Barnes, A. K. Petford-Long, R. C. Doole, R. Serna, J. Gonzalo, A. Suarez-Garcia, C. N. Afonso, and D. Hole, “Structural studies of Ag nanocrystals embedded in amorphous Al2O3 grown by pulsed laser deposition,” Nanotechnology 13, 465-470 (2002). [CrossRef]
  13. U. Schurmann, H. Takele, V. Zaporojtchenko, and F. Faupel, “Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering,” Thin Solid Films 515, 801-804 (2006). [CrossRef]
  14. V. S. K. Chakravadhanula, M. Elbahri, U. Schurmann, H. Takele, H. Greve, V. Zaporojtchenko, and F. Faupel, “Equal intensity double plasmon resonance of bimetallic quasi-nanocomposites based on sandwich geometry,” Nanotechnology 19, 225302 (2008). [CrossRef] [PubMed]
  15. M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315, 313-320(1999). [CrossRef]
  16. J. C. Pivin, M. A. García, H. Hofmeister, A. Martucci, M. Sendova Massileva, M. Nikolaeva, O. Kaitasov, and J. Llopis, “Optical properties of silver clusters formed by ion irradiation,” Euro. Phys. J. D 20, 251-260 (2002). [CrossRef]
  17. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  18. Z. Q. Sun, D. M. Sun, and T. N. Ruan, “Microstructural and optical absorption properties of Cu-MgF2 nanoparticle cermet film,” Chin. Phys. Lett. 19, 1365-1368 (2002). [CrossRef]
  19. J. Toudert, D. Bobonneau, L. Simonot, S. Camelio, and T. Girardeau, “Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization,” Nanotechnology 19, 125709 (2008). [CrossRef] [PubMed]
  20. T. Yamaguchi, S. Yoshida, and A. Kimbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173-187 (1974). [CrossRef]
  21. V. A. Fedotov, V. I. Emel'yanov, K. F. MacDonald, and N. I. Zheludev, “Optical properties of closely packed nanoparticle films: spheroids and nanoshells,” J. Opt. A 6, 155-160 (2004). [CrossRef]
  22. H. Hovel, S. Fritz, A. Hilger, U. Kreibig, and M. Vollmer, “Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping,” Phys. Rev. B 48, 18178-18188 (1993). [CrossRef]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  24. E. D. Palik, Handbook of Optical Constants (Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited