OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: 792–798

Low-speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime

Falko Riechert, Gordon Craggs, Youri Meuret, Bart Van Giel, Hugo Thienpont, Uli Lemmer, and Guy Verschaffelt  »View Author Affiliations

Applied Optics, Vol. 48, Issue 4, pp. 792-798 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (701 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate low-speckle laser projection using a broad-area vertical-cavity surface-emitting laser (VCSEL) emitting at 840 nm wavelength as the illumination source. By driving the source in a nonmodal emission regime, we were able to achieve speckle contrast values as low as 3.5% in a realistic projection setup. This was done by driving the VCSEL with specific current pulses without using any additional or mechanically moving components to destroy the coherence of the laser beam. We quantitatively model the speckle contrast reduction based on polarization scrambling and the reduced temporal and spatial coherence of the VCSEL.

© 2009 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.1670) Coherence and statistical optics : Coherent optical effects
(030.6140) Coherence and statistical optics : Speckle
(120.2040) Instrumentation, measurement, and metrology : Displays
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:

Original Manuscript: October 13, 2008
Revised Manuscript: December 15, 2008
Manuscript Accepted: December 16, 2008
Published: January 26, 2009

Falko Riechert, Gordon Craggs, Youri Meuret, Bart Van Giel, Hugo Thienpont, Uli Lemmer, and Guy Verschaffelt, "Low-speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime," Appl. Opt. 48, 792-798 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2006).
  2. L. Wang, T. Tschudi, T. Halldórsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770-1775 (1998). [CrossRef]
  3. S. C. Shin, S. S. Yooa, S. Y. Leea, C.-Y. Parka, S.-Y. Parka, J. W. Kwona, and S.-G. Leea, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91-96(2006). [CrossRef]
  4. M. Peeters, G. Verschaffelt, H. Thienpont, S. K. Mandre, I. Fischer, and M. Grabherr, “Spatial decoherence of pulsed broad-area vertical-cavity surface-emitting lasers,” Opt. Express 13, 9337-9345 (2005). [CrossRef] [PubMed]
  5. F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, “Speckle characteristics of a broad-area VCSEL in the incoherent emission regime,” Opt. Commun. 281, 4424-4431 (2008). [CrossRef]
  6. B. Van Giel, Y. Meuret, L. Bogaert, H. Murat, H. De Smet, and H. Thienpont, “Efficient and compact illumination in LED projection displays,” SID Symp. Dig. 38, 947-950 (2007). [CrossRef]
  7. P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K (2005). [CrossRef]
  8. F. Riechert, F. Glöckler, and U. Lemmer, “Method to determine the speckle characteristics of front projection screens,” submitted to Appl. Opt. (2008).
  9. H. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices (Springer, 2003).
  10. E. Wolf and G. S. Agarwal, “Coherence theory of laser resonator modes,” J. Opt. Soc. Am. A 1, 541-546 (1984). [CrossRef]
  11. G. Verschaffelt, G. Craggs, M. Peeters, S. K. Mandre, H. Thienpont, and I. Fischer, “Spatially resolved characterization of the coherence area in the incoherent emission regime of a broad-area vertical-cavity surface-emitting laser,” accepted for publication in IEEE J. Quantum Electron. (2008).
  12. S. K. Mandre, W. Elsässer, I. Fischer, M. Peeters, and G. Verschaffelt, “Determining the temporally and radially resolved temperature distribution inside a pulsed broad-area vertical-cavity surface-emitting laser cavity,” Appl. Phys. Lett. 89, 151106 (2006). [CrossRef]
  13. A. Mooradian, S. Antikichev, B. Cantos, G. Carey, M. Jansen, S. Hallstein, W. Hitchens, D. Lee, J.-M. Pelaprat, R. Nabiev, G. Niven, A. Shchegrov, A. Umbrasas, and J. Watson, “High power extended vertical cavity surface emitting diode lasers and arrays and their applications,” presented at Micro-Optics Conference, Tokyo, Japan (2005).
  14. M. Miller, M. Grabherr, R. Jäger, and K. J. Ebeling, “High-power VCSEL arrays for emission in the watt regime at room temperature,” IEEE Photon. Technol. Lett. 13, 173-175(2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited