OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 48, Iss. 4 — Feb. 1, 2009
  • pp: B105–B110

Optical emission enhancement of laser-produced copper plasma under a steady magnetic field

Yu Li, Changhong Hu, Hanzhuang Zhang, Zhankui Jiang, and Zhongshan Li  »View Author Affiliations


Applied Optics, Vol. 48, Issue 4, pp. B105-B110 (2009)
http://dx.doi.org/10.1364/AO.48.00B105


View Full Text Article

Enhanced HTML    Acrobat PDF (655 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

From a copper target, laser-ablated plasma was investigated by spectral- and temporal-resolved emission spectroscopy. With the presence of a 0.8 T steady magnetic field, the emission of the expanding plasma showed significant enhancements of the spectral lines for all neutral, singly, and doubly ionized species. The relative enhancements for different species have been studied with temporal-resolved measurement by comparing the spectra obtained with and without the magnetic field. The enhanced emission from the plasma plume is attributed to an increase of the radiative recombination rate in the plasma due to magnetic confinement. The temporal evolution of the plasma parameters, including electron temperature and electron density, was deduced and discussed for the cases with and without a magnetic field.

© 2008 Optical Society of America

OCIS Codes
(300.2140) Spectroscopy : Emission
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6350) Spectroscopy : Spectroscopy, ionization
(350.5400) Other areas of optics : Plasmas
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

History
Original Manuscript: August 1, 2008
Revised Manuscript: November 19, 2008
Manuscript Accepted: November 25, 2008
Published: December 22, 2008

Citation
Yu Li, Changhong Hu, Hanzhuang Zhang, Zhankui Jiang, and Zhongshan Li, "Optical emission enhancement of laser-produced copper plasma under a steady magnetic field," Appl. Opt. 48, B105-B110 (2009)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-48-4-B105


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Sturm, L. Peter, and R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275-1278 (2000). [CrossRef]
  2. A. P. M. Michel, M. Lawrence-Snyder, S. M. Angel, and A. D. Chave, “Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: evaluation of key measurement parameters,” Appl. Opt. 46, 2507-2515 (2007). [CrossRef] [PubMed]
  3. M. Hanafi, M. M. Omar, and Y. D. Gamal, “Study of laser-induced breakdown spectroscopy of gases,” Radiat. Phys. Chem. 57, 11-20 (2000). [CrossRef]
  4. D. W. Hahn and M. M. Lunden, “Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy,” Aerosol Sci. Technol. 33, 30-48 (2000). [CrossRef]
  5. D. Anglos, S. Couris, and C. Fotakis, “Laser diagnostics of painted artworks: laser-induced breakdown spectroscopy in pigment identification,” Appl. Spectrosc. 51, 1025-1030(1997). [CrossRef]
  6. D. A. Cremers, J. E. Barefield, and A. C. Koskelo, “Remote elemental analysis by laser-induced breakdown spectroscopy using a fiber-optic cable,” Appl. Spectrosc. 49, 857-860(1995). [CrossRef]
  7. A. K. Rai, F. Y. Yueh, and J. P. Singh, “Laser-induced breakdown spectroscopy of molten aluminum alloy,” Appl. Opt. 42, 2078-2084 (2003). [CrossRef] [PubMed]
  8. L. St.-Onge, M. Sabsabi, and P. Cielo, “Analysis of solids using laser induced plasma spectroscopy in double pulse mode,” Spectrochim. Acta Part B 53, 407-415 (1998). [CrossRef]
  9. D. N. Stratis, K. L. Eland, and S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1287-1433 (2001). [CrossRef]
  10. R. A. Multari, L. E. Foster, D. A. Cremers, and M. J. Ferris, “Effect of sampling geometry on elemental emissions in laser induced breakdown spectroscopy,” Appl. Spectrosc. 50, 1483-1499 (1996). [CrossRef]
  11. Y. Ito, O. Ueki, and S. Nakamura, “Determination of colloidal iron in water by laser-induced breakdown spectroscopy,” Anal. Chim. Acta 299, 401-405 (1995). [CrossRef]
  12. T. Pisarczyk, A. Farynski, H. Fiedorowicz, P. Gogolewski, M. Kusnierz, J. Makowski, R. Miklaszewski, M. Mroczkowski, P. Parys, and M. Szczurek, “Formation of an elongated plasma column by a magnetic confinement of a laser-produced plasma,” Laser Part. Beams 10, 767-776 (1992). [CrossRef]
  13. R. Jordan, D. Cole, and J. G. Lunney, “Pulsed laser deposition of particulate-free thin films using a curved magnetic filter,” Appl. Surf. Sci. 110, 403-407 (1997). [CrossRef]
  14. F. Kokai, Y. Koga, and R. B. Heimann, “Magnetic field enhanced growth of carbon cluster ions in the laser ablation plume of graphite,” Appl. Surf. Sci. 96-98, 261-266 (1996). [CrossRef]
  15. A. Neogi, V. Narayanan, and R. K. Thareja, “Optical emission studies of laser ablated carbon plasma in a curved magnetic field,” Phys. Lett. A 258, 135-140 (1999). [CrossRef]
  16. V. N. Rai, A. K. Rai, F. Y. Yueh, and J. P. Singh, “Optical emission from laser-induced breakdown plasma of solid and liquid samples in the presence of a magnetic field,” Appl. Opt. 42, 2085-2093 (2003). [CrossRef] [PubMed]
  17. S. S. Harilal, M. S. Tillack, B. O'Shay, C. V. Bindhu, and F. Najmabadi, “Confinement and dynamics of laser-produced plasma expanding across a transverse magnetic field,” Phys. Rev. E 69, 026413 (2004). [CrossRef]
  18. M. A. Hafez, “Characteristics of Cu plasma produced by a laser interaction with a solid target,” Plasma Sources Sci. Technol. 12, 185-198 (2003). [CrossRef]
  19. J. A. Bittencourt, Fundamentals of Plasma Physics (Pergamon, 1986).
  20. A. Neogi and R. K. Thareja, “Laser-produced carbon plasma expanding in vacuum, low pressure ambient gas and nonuniform magnetic field,” Phys. Plasmas 6, 365-371 (1999). [CrossRef]
  21. L. Dirnberger, P. E. Dyer, S. R. Farrar, and P. H. Key, “Observation of magnetic-field-enhanced excitation and ionization in the plume of KRF-laser-ablated magnesium,” Appl. Phys. A 59, 311-316 (1994). [CrossRef]
  22. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960-964 (1999). [CrossRef]
  23. B. Német and L. Kozma, “Time-resolved optical emission spectrometry of Q-switched Nd:YAG laser-induced plasmas from copper targets in air at atmospheric pressure,” Spectrochim. Acta Part B 50, 1869-1888 (1995). [CrossRef]
  24. H. R. Griem, Plasma Spectroscopy (Cambridge, 1964).
  25. R. K. Singh and J. Narayan, “Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model,” Phys. Rev. B 41, 8843-8852 (1990). [CrossRef]
  26. B. Singha, A. Sarma, and J. Chutia, “Influence of magnetic field on plasma sheath and electron temperature,” Rev. Sci. Instrum. 72, 2282-2287 (2001). [CrossRef]
  27. M. Sabsabi and P. Cielo, “Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization,” Appl. Spectrosc. 49, 499-507 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited